IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v175y2023ics0965856423001866.html
   My bibliography  Save this article

LWR and shockwave analysis - Failures under a concave fundamental diagram and unexpected induced disturbances

Author

Listed:
  • Coifman, Benjamin
  • Ponnu, Balaji
  • El Asmar, Paul

Abstract

This paper undertakes a detailed empirical study of traffic dynamics on a freeway. The results show the traffic dynamics that systematically determine the shape of the fundamental diagram, FD, can also violate the stationarity assumptions of both shockwave analysis and Lighthill, Whitham and Richard's models, thereby inhibiting the applicability of these classical macroscopic traffic flow theories. The outcome is challenging because there is no way to identify the problem using only the macroscopic detector data. The research examines conditions local to vehicle detector stations to establish the FD while the single vehicle passage method is used to analyze the composition of vehicles underlying the aggregate samples. Then, traffic states are correlated between successive stations to measure the actual signal velocities and show they are inconsistent with the classical theories. This analysis also revealed that conditions in one lane can induce signals in another lane. Rather than exhibiting a single signal passing a given point in time and space, the induced and intrinsic signals are superimposed on one another in the given lane. We suspect the subtle dynamics revealed in this research have gone unnoticed because they are far below the resolution of conventional traffic monitoring. The findings could have implications to other traffic flow models that rely on the FD, so care should be taken to assess if a given model is potentially sensitive to the non-stationary dynamics presented herein.

Suggested Citation

  • Coifman, Benjamin & Ponnu, Balaji & El Asmar, Paul, 2023. "LWR and shockwave analysis - Failures under a concave fundamental diagram and unexpected induced disturbances," Transportation Research Part A: Policy and Practice, Elsevier, vol. 175(C).
  • Handle: RePEc:eee:transa:v:175:y:2023:i:c:s0965856423001866
    DOI: 10.1016/j.tra.2023.103766
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856423001866
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2023.103766?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Coifman, Benjamin, 2003. "Estimating density and lane inflow on a freeway segment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(8), pages 689-701, October.
    2. Newell, G. F., 1998. "A moving bottleneck," Transportation Research Part B: Methodological, Elsevier, vol. 32(8), pages 531-537, November.
    3. Coifman, Benjamin, 2015. "Empirical flow-density and speed-spacing relationships: Evidence of vehicle length dependency," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 54-65.
    4. Coifman, Benjamin, 2014. "Revisiting the empirical fundamental relationship," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 173-184.
    5. Chen, Danjue & Ahn, Soyoung, 2018. "Capacity-drop at extended bottlenecks: Merge, diverge, and weave," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 1-20.
    6. Cassidy, Michael J., 1998. "Bivariate relations in nearly stationary highway traffic," Transportation Research Part B: Methodological, Elsevier, vol. 32(1), pages 49-59, January.
    7. Daganzo, Carlos F., 2002. "A behavioral theory of multi-lane traffic flow. Part I: Long homogeneous freeway sections," Transportation Research Part B: Methodological, Elsevier, vol. 36(2), pages 131-158, February.
    8. Coifman, Benjamin & Ponnu, Balaji, 2020. "Adjacent lane dependencies modulating wave velocity on congested freeways-An empirical study," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 84-99.
    9. Coifman, Benjamin & Kim, Seoungbum, 2011. "Extended bottlenecks, the fundamental relationship, and capacity drop on freeways," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(9), pages 980-991, November.
    10. Ponnu, Balaji & Coifman, Benjamin, 2017. "When adjacent lane dependencies dominate the uncongested regime of the fundamental relationship," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 602-615.
    11. Laval, Jorge A., 2009. "Effects of geometric design on freeway capacity: Impacts of truck lane restrictions," Transportation Research Part B: Methodological, Elsevier, vol. 43(6), pages 720-728, July.
    12. Coifman, Benjamin & Cassidy, Michael, 2002. "Vehicle reidentification and travel time measurement on congested freeways," Transportation Research Part A: Policy and Practice, Elsevier, vol. 36(10), pages 899-917, December.
    13. Ponnu, Balaji & Coifman, Benjamin, 2015. "Speed-spacing dependency on relative speed from the adjacent lane: New insights for car following models," Transportation Research Part B: Methodological, Elsevier, vol. 82(C), pages 74-90.
    14. Zhang, H. M., 2003. "Anisotropic property revisited--does it hold in multi-lane traffic?," Transportation Research Part B: Methodological, Elsevier, vol. 37(6), pages 561-577, July.
    15. Paul I. Richards, 1956. "Shock Waves on the Highway," Operations Research, INFORMS, vol. 4(1), pages 42-51, February.
    16. Coifman, Benjamin, 2003. "Identifying the onset of congestion rapidly with existing traffic detectors," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(3), pages 277-291, March.
    17. Zhang, H. M., 2002. "A non-equilibrium traffic model devoid of gas-like behavior," Transportation Research Part B: Methodological, Elsevier, vol. 36(3), pages 275-290, March.
    18. Newell, G. F., 2002. "A simplified car-following theory: a lower order model," Transportation Research Part B: Methodological, Elsevier, vol. 36(3), pages 195-205, March.
    19. (Sean) Qian, Zhen & Li, Jia & Li, Xiaopeng & Zhang, Michael & Wang, Haizhong, 2017. "Modeling heterogeneous traffic flow: A pragmatic approach," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 183-204.
    20. Logghe, S. & Immers, L.H., 2008. "Multi-class kinematic wave theory of traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 42(6), pages 523-541, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Coifman, Benjamin & Ponnu, Balaji, 2020. "Adjacent lane dependencies modulating wave velocity on congested freeways-An empirical study," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 84-99.
    2. Mohammadian, Saeed & Zheng, Zuduo & Haque, Md. Mazharul & Bhaskar, Ashish, 2021. "Performance of continuum models for realworld traffic flows: Comprehensive benchmarking," Transportation Research Part B: Methodological, Elsevier, vol. 147(C), pages 132-167.
    3. Coifman, Benjamin, 2015. "Empirical flow-density and speed-spacing relationships: Evidence of vehicle length dependency," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 54-65.
    4. Seo, Toru & Kawasaki, Yutaka & Kusakabe, Takahiko & Asakura, Yasuo, 2019. "Fundamental diagram estimation by using trajectories of probe vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 40-56.
    5. Coifman, Benjamin A. & Mallika, Ramachandran, 2007. "Distributed surveillance on freeways emphasizing incident detection and verification," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(8), pages 750-767, October.
    6. Mohan, Ranju & Ramadurai, Gitakrishnan, 2021. "Multi-class traffic flow model based on three dimensional flow–concentration surface," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 577(C).
    7. Chen, Danjue & Ahn, Soyoung, 2018. "Capacity-drop at extended bottlenecks: Merge, diverge, and weave," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 1-20.
    8. Maiti, Nandan & Laval, Jorge A. & Chilukuri, Bhargava Rama, 2024. "Universality of area occupancy-based fundamental diagrams in mixed traffic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 640(C).
    9. Coifman, Benjamin, 2006. "Extracting More Information from the Existing Freeway Traffic Monitoring Infrastructure," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt34n479gz, Institute of Transportation Studies, UC Berkeley.
    10. Ponnu, Balaji & Coifman, Benjamin, 2015. "Speed-spacing dependency on relative speed from the adjacent lane: New insights for car following models," Transportation Research Part B: Methodological, Elsevier, vol. 82(C), pages 74-90.
    11. Blandin, Sébastien & Argote, Juan & Bayen, Alexandre M. & Work, Daniel B., 2013. "Phase transition model of non-stationary traffic flow: Definition, properties and solution method," Transportation Research Part B: Methodological, Elsevier, vol. 52(C), pages 31-55.
    12. Juan Carlos Muñoz & Carlos F. Daganzo, 2003. "Structure of the Transition Zone Behind Freeway Queues," Transportation Science, INFORMS, vol. 37(3), pages 312-329, August.
    13. Qian, Wei-Liang & F. Siqueira, Adriano & F. Machado, Romuel & Lin, Kai & Grant, Ted W., 2017. "Dynamical capacity drop in a nonlinear stochastic traffic model," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 328-339.
    14. Ponnu, Balaji & Coifman, Benjamin, 2017. "When adjacent lane dependencies dominate the uncongested regime of the fundamental relationship," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 602-615.
    15. Yibing Wang & Long Wang & Xianghua Yu & Jingqiu Guo, 2023. "Capacity Drop at Freeway Ramp Merges with Its Replication in Macroscopic and Microscopic Traffic Simulations: A Tutorial Report," Sustainability, MDPI, vol. 15(3), pages 1-27, January.
    16. Mohammadian, Saeed & Zheng, Zuduo & Haque, Mazharul & Bhaskar, Ashish, 2023. "NET-RAT: Non-equilibrium traffic model based on risk allostasis theory," Transportation Research Part A: Policy and Practice, Elsevier, vol. 174(C).
    17. Jin, Wen-Long, 2016. "On the equivalence between continuum and car-following models of traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 543-559.
    18. Bai, Lu & Wong, S.C. & Xu, Pengpeng & Chow, Andy H.F. & Lam, William H.K., 2021. "Calibration of stochastic link-based fundamental diagram with explicit consideration of speed heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 524-539.
    19. Ngoduy, D. & Liu, R., 2007. "Multiclass first-order simulation model to explain non-linear traffic phenomena," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 385(2), pages 667-682.
    20. Kontorinaki, Maria & Spiliopoulou, Anastasia & Roncoli, Claudio & Papageorgiou, Markos, 2017. "First-order traffic flow models incorporating capacity drop: Overview and real-data validation," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 52-75.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:175:y:2023:i:c:s0965856423001866. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.