IDEAS home Printed from https://ideas.repec.org/a/hin/complx/5649821.html
   My bibliography  Save this article

Two-Stage Robust Optimization for the Orienteering Problem with Stochastic Weights

Author

Listed:
  • Ke Shang
  • Felix T. S. Chan
  • Stephen Karungaru
  • Kenji Terada
  • Zuren Feng
  • Liangjun Ke

Abstract

In this paper, the two-stage orienteering problem with stochastic weights is studied, where the first-stage problem is to plan a path under the uncertain environment and the second-stage problem is a recourse action to make sure that the length constraint is satisfied after the uncertainty is realized. First, we explain the recourse model proposed by Evers et al. (2014) and point out that this model is very complex. Then, we introduce a new recourse model which is much simpler with less variables and less constraints. Based on these two recourse models, we introduce two different two-stage robust models for the orienteering problem with stochastic weights. We theoretically prove that the two-stage robust models are equivalent to their corresponding static robust models under the box uncertainty set, which indicates that the two-stage robust models can be solved by using common mathematical programming solvers (e.g., IBM CPLEX optimizer). Furthermore, we prove that the two two-stage robust models are equivalent to each other even though they are based on different recourse models, which indicates that we can use a much simpler model instead of a complex model for practical use. A case study is presented by comparing the two-stage robust models with a one-stage robust model for the orienteering problem with stochastic weights. The numerical results of the comparative studies show the effectiveness and superiority of the proposed two-stage robust models for dealing with the two-stage orienteering problem with stochastic weights.

Suggested Citation

  • Ke Shang & Felix T. S. Chan & Stephen Karungaru & Kenji Terada & Zuren Feng & Liangjun Ke, 2020. "Two-Stage Robust Optimization for the Orienteering Problem with Stochastic Weights," Complexity, Hindawi, vol. 2020, pages 1-15, November.
  • Handle: RePEc:hin:complx:5649821
    DOI: 10.1155/2020/5649821
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2020/5649821.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2020/5649821.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/5649821?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiang Zhou & Jianmei Zhang & Pengfei Gao & Ruixiao Zhang & Lijuan Liu & Sheng Wang & Lin Cheng & Wei Wang & Shiyou Yang, 2023. "Two-Stage Robust Optimization for Prosumers Considering Uncertainties from Sustainable Energy of Wind Power Generation and Load Demand Based on Nested C&CG Algorithm," Sustainability, MDPI, vol. 15(12), pages 1-23, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:5649821. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.