IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i11p9040-d1163084.html
   My bibliography  Save this article

The Forecast of Beijing Habitat Quality Dynamics Considering the Government Land Use Planning and the City’s Spatial Heterogeneity

Author

Listed:
  • Wenyu Wang

    (School of Geomatics and Urban Spatial Informatics, Beijing University of Civil Engineering and Architecture, Beijing 102616, China)

  • Chenghui Liu

    (School of Geomatics and Urban Spatial Informatics, Beijing University of Civil Engineering and Architecture, Beijing 102616, China)

  • Hongbo Yang

    (Research Center for Eco-Environmental Sciences, State Key Laboratory of Urban and Regional Ecology, Chinese Academy of Sciences, Beijing 100085, China)

  • Guoyin Cai

    (School of Geomatics and Urban Spatial Informatics, Beijing University of Civil Engineering and Architecture, Beijing 102616, China)

Abstract

The evaluation of the habitat quality dynamics is important to conservation management and sustainable development. Forecasting future habitat quality changes depends on reliable projections of future land uses that align with government’s future land-use planning. Additionally, the spatial heterogeneity problem cannot be dismissed in spatial modelling and the uneven distribution of urban development should be considered in the land use simulation and prediction. To address these issues, we established a bidirectional framework: from the top-down side, we impose land use and land cover (LULC) quantity constraints considering the goals of government land use planning; from the bottom-up side, we adopt zoning methods to consider the spatial heterogeneity of land use transition rules for improving the accuracy of land use prediction. We applied this approach to project habitat quality of Beijing in 2035 under different development scenarios. Firstly, we constructed multiple future scenarios (natural development, ND; economic development, ED; ecological protection, EP; livable city, LC) and computed the quantities of various land uses under those scenarios. Secondly, we addressed the spatial heterogeneity issue by adopting the zoning methods to improve the land use simulation accuracy of the PLUS model. Finally, based on the predicted LULC data, we analyzed the future habitat quality patterns in Beijing under different scenarios using InVEST model. We found that the zoning method can improve the simulation accuracy of LULC. Furthermore, significant spatial differences can be found in the habitat quality under different land use scenarios, which represent various government land use strategies. Among the four scenarios, the LC scenario is the most conducive one due to its ability to achieve a good balance between economic and ecological benefits. This study provides evidence for justifying the feasibility of Beijing’s development plan to become a livable city.

Suggested Citation

  • Wenyu Wang & Chenghui Liu & Hongbo Yang & Guoyin Cai, 2023. "The Forecast of Beijing Habitat Quality Dynamics Considering the Government Land Use Planning and the City’s Spatial Heterogeneity," Sustainability, MDPI, vol. 15(11), pages 1-17, June.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:11:p:9040-:d:1163084
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/11/9040/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/11/9040/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zheng, Liang & Wang, Ying & Li, Jiangfeng, 2023. "Quantifying the spatial impact of landscape fragmentation on habitat quality: A multi-temporal dimensional comparison between the Yangtze River Economic Belt and Yellow River Basin of China," Land Use Policy, Elsevier, vol. 125(C).
    2. Huang, Daquan & Huang, Jing & Liu, Tao, 2019. "Delimiting urban growth boundaries using the CLUE-S model with village administrative boundaries," Land Use Policy, Elsevier, vol. 82(C), pages 422-435.
    3. Yao, ZHOU & Jiang, CHANG & Shan-shan, FENG, 2022. "Effects of urban growth boundaries on urban spatial structural and ecological functional optimization in the Jining Metropolitan Area, China," Land Use Policy, Elsevier, vol. 117(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guoqiang Ma & Qiujie Li & Jinxiu Zhang & Lixun Zhang & Hua Cheng & Zhengping Ju & Guojun Sun, 2022. "Simulation and Analysis of Land-Use Change Based on the PLUS Model in the Fuxian Lake Basin (Yunnan–Guizhou Plateau, China)," Land, MDPI, vol. 12(1), pages 1-18, December.
    2. Changqing Sun & Yulong Bao & Battsengel Vandansambuu & Yuhai Bao, 2022. "Simulation and Prediction of Land Use/Cover Changes Based on CLUE-S and CA-Markov Models: A Case Study of a Typical Pastoral Area in Mongolia," Sustainability, MDPI, vol. 14(23), pages 1-21, November.
    3. Yusuyunjiang Mamitimin & Zibibula Simayi & Ayinuer Mamat & Bumairiyemu Maimaiti & Yunfei Ma, 2023. "FLUS Based Modeling of the Urban LULC in Arid and Semi-Arid Region of Northwest China: A Case Study of Urumqi City," Sustainability, MDPI, vol. 15(6), pages 1-14, March.
    4. Chasia, Stanley & Olang, Luke O. & Sitoki, Lewis, 2023. "Modelling of land-use/cover change trajectories in a transboundary catchment of the Sio-Malaba-Malakisi Region in East Africa using the CLUE-s model," Ecological Modelling, Elsevier, vol. 476(C).
    5. Xiaoyang Liu & Weihao Shi & Sen Zhang, 2022. "Progress of Research on Urban Growth Boundary and Its Implications in Chinese Studies Based on Bibliometric Analysis," IJERPH, MDPI, vol. 19(24), pages 1-18, December.
    6. Somayeh Ahani & Hashem Dadashpoor, 2021. "Urban growth containment policies for the guidance and control of peri-urbanization: a review and proposed framework," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14215-14244, October.
    7. Kang Liu & Chaozheng Zhang & Han Zhang & Hao Xu & Wen Xia, 2023. "Spatiotemporal Variation and Dynamic Simulation of Ecosystem Carbon Storage in the Loess Plateau Based on PLUS and InVEST Models," Land, MDPI, vol. 12(5), pages 1-18, May.
    8. Na Chen & Gang Cheng & Jie Yang & Huan Ding & Shi He, 2023. "Evaluation of Urban Ecological Environment Quality Based on Improved RSEI and Driving Factors Analysis," Sustainability, MDPI, vol. 15(11), pages 1-18, May.
    9. Xue Li & Wen Li & Yu Gao, 2023. "Multi-Scenario Simulation of Green Space Landscape Pattern in Harbin City Based on FLUS Model," IJERPH, MDPI, vol. 20(5), pages 1-26, February.
    10. Yanan Li & Linghua Duo & Ming Zhang & Zhenhua Wu & Yanjun Guan, 2021. "Assessment and Estimation of the Spatial and Temporal Evolution of Landscape Patterns and Their Impact on Habitat Quality in Nanchang, China," Land, MDPI, vol. 10(10), pages 1-19, October.
    11. Xiaohuan Xie & Haifeng Deng & Shengyuan Li & Zhonghua Gou, 2024. "Optimizing Land Use for Carbon Neutrality: Integrating Photovoltaic Development in Lingbao, Henan Province," Land, MDPI, vol. 13(1), pages 1-18, January.
    12. Yu Chen & Shuangshuang Liu & Wenbo Ma & Qian Zhou, 2023. "Assessment of the Carrying Capacity and Suitability of Spatial Resources and the Environment and Diagnosis of Obstacle Factors in the Yellow River Basin," IJERPH, MDPI, vol. 20(4), pages 1-26, February.
    13. Linlin Wang & Qiyuan Hu & Liming Liu & Chengcheng Yuan, 2022. "Land Use Multifunctions in Metropolis Fringe: Spatiotemporal Identification and Trade-Off Analysis," Land, MDPI, vol. 12(1), pages 1-18, December.
    14. Chao Zhang & Shuai Zhong & Xue Wang & Lei Shen & Litao Liu & Yujie Liu, 2019. "Land Use Change in Coastal Cities during the Rapid Urbanization Period from 1990 to 2016: A Case Study in Ningbo City, China," Sustainability, MDPI, vol. 11(7), pages 1-21, April.
    15. Yangcheng Hu & Yi Liu & Changyan Li, 2022. "Multi-Scenario Simulation of Land Use Change and Ecosystem Service Value in the Middle Reaches of Yangtze River Urban Agglomeration," Sustainability, MDPI, vol. 14(23), pages 1-19, November.
    16. Haitao Ji & Xiaoshun Li & Yiwei Geng & Xin Chen & Yuexiang Wang & Jumei Cheng & Zhuang Chen, 2023. "Delineation of Urban Development Boundary and Carbon Emission Effects in Xuzhou City, China," Land, MDPI, vol. 12(9), pages 1-16, September.
    17. Linlin Wang & Zhuo Li & Chengcheng Yuan & Liming Liu, 2024. "Exploration on the reasons for low efficiency of arable land protection policy in China: an evolutionary game theoretic model," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(10), pages 25173-25198, October.
    18. Yuxiang Zhang & Dongjie Guan & Xiujuan He & Boling Yin, 2022. "Simulation on the Evolution Trend of the Urban Sprawl Spatial Pattern in the Upper Reaches of the Yangtze River, China," IJERPH, MDPI, vol. 19(15), pages 1-21, July.
    19. Dan Yi & Xi Guo & Yi Han & Jie Guo & Minghao Ou & Xiaomin Zhao, 2022. "Coupling Ecological Security Pattern Establishment and Construction Land Expansion Simulation for Urban Growth Boundary Delineation: Framework and Application," Land, MDPI, vol. 11(3), pages 1-18, March.
    20. Jie Liu & Lang Zhang & Qingping Zhang, 2019. "The Development Simulation of Urban Green Space System Layout Based on the Land Use Scenario: A Case Study of Xuchang City, China," Sustainability, MDPI, vol. 12(1), pages 1-19, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:11:p:9040-:d:1163084. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.