IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i11p8913-d1161260.html
   My bibliography  Save this article

Shea Butter Oil Biodiesel Synthesized Using Snail Shell Heterogeneous Catalyst: Performance and Environmental Impact Analysis in Diesel Engine Applications

Author

Listed:
  • Akinola David Ogunsola

    (Department of Mechanical Engineering, Ladoke Akintola University of Technology, Ogbomoso 210214, Nigeria)

  • Modiu O. Durowoju

    (Department of Mechanical Engineering, Ladoke Akintola University of Technology, Ogbomoso 210214, Nigeria)

  • Oyetola Ogunkunle

    (Department of Mechanical and Industrial Engineering Technology, University of Johannesburg, Johannesburg 2006, South Africa)

  • Opeyeolu T. Laseinde

    (Department of Mechanical and Industrial Engineering Technology, University of Johannesburg, Johannesburg 2006, South Africa)

  • S. M. Ashrafur Rahman

    (Biofuel Engine Research Facility, Queensland University of Technology, Brisbane, QLD 4000, Australia)

  • Islam Md Rizwanul Fattah

    (Centre for Green Technology (CGT), School of Civil and Environmental Engineering, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, NSW 2007, Australia)

Abstract

The implementation of biodiesel in internal combustion engines has been observed to enhance engine performance and mitigate the discharge of toxic gaseous emissions from the engine. In this research, Shea Butter Oil Biodiesel (SBOB) was used to operate a diesel engine to analyze the performance and emissions characteristics. Shea Butter Oil Biodiesel (SBOB) was blended with petroleum diesel in ratios 0:100 (B0), 25:75 (B25), 50:50 (B50), 75:25 (B75), and 100:0 (B100). The torque, brake power (BP), and brake thermal efficiency (BTE) of the engine were determined. Gaseous emissions from the engine’s combustion were characterized using the BOSEAN BH-4S portable multi-gas detector, while the organic emissions compositions were detected and quantified using Gas Chromatography-Mass Spectrometry (GC-MS). The fuel properties of SBOB and its blends were found to be within the range of acceptable standards. However, the carbon content, sulphur content, heating value, and ash content of the blends decreased from 0.68 to 0.12 wt %, 0.04 to 0.00 wt %, 44.2 to 34.2 MJ/kg, and 0.020 to 0.010 wt %, respectively. The engine torque, brake power, BTE, and engine vibrations were found to reduce when the biodiesel blends were used. Besides the diesel fuel, the biodiesel blend, B25, produced the best engine performance characteristics with 8.50 Nm torque, 1780.95 W BP, and 90.29% BTE. The B100 produced the lowest concentrations of carbon emissions, viz. 520 ppm CO and 1.0% CO 2 . The NO and NO 2 concentrations were found to increase for all the biodiesel blends used. The NO and NO 2 concentrations were measured as 230 ppm and 210 ppm for B0, respectively, and 250 ppm and 235 ppm for B25, respectively. The research showed that SBOB has improved engine performance and lowered the emissions profile of CO and CO 2 compared with petroleum diesel. The GCMS analysis confirmed that some harmful organic compounds were present in the emissions profile obtained from the exhaust samples of the diesel engine at various compositions.

Suggested Citation

  • Akinola David Ogunsola & Modiu O. Durowoju & Oyetola Ogunkunle & Opeyeolu T. Laseinde & S. M. Ashrafur Rahman & Islam Md Rizwanul Fattah, 2023. "Shea Butter Oil Biodiesel Synthesized Using Snail Shell Heterogeneous Catalyst: Performance and Environmental Impact Analysis in Diesel Engine Applications," Sustainability, MDPI, vol. 15(11), pages 1-16, May.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:11:p:8913-:d:1161260
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/11/8913/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/11/8913/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mofijur, M. & Masjuki, H.H. & Kalam, M.A. & Atabani, A.E. & Shahabuddin, M. & Palash, S.M. & Hazrat, M.A., 2013. "Effect of biodiesel from various feedstocks on combustion characteristics, engine durability and materials compatibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 441-455.
    2. Chauhan, Bhupendra Singh & Kumar, Naveen & Cho, Haeng Muk & Lim, Hee Chang, 2013. "A study on the performance and emission of a diesel engine fueled with Karanja biodiesel and its blends," Energy, Elsevier, vol. 56(C), pages 1-7.
    3. Mohammadi, Pouya & Nikbakht, Ali M. & Tabatabaei, Meisam & Farhadi, Khalil & Mohebbi, Arash & Khatami far, Mehdi, 2012. "Experimental investigation of performance and emission characteristics of DI diesel engine fueled with polymer waste dissolved in biodiesel-blended diesel fuel," Energy, Elsevier, vol. 46(1), pages 596-605.
    4. Tayari, Sara & Abedi, Reza & Rahi, Abbas, 2020. "Comparative assessment of engine performance and emissions fueled with three different biodiesel generations," Renewable Energy, Elsevier, vol. 147(P1), pages 1058-1069.
    5. Oyetola Ogunkunle & Noor A. Ahmed, 2021. "Overview of Biodiesel Combustion in Mitigating the Adverse Impacts of Engine Emissions on the Sustainable Human–Environment Scenario," Sustainability, MDPI, vol. 13(10), pages 1-28, May.
    6. Roy, Murari Mohon & Calder, Jorge & Wang, Wilson & Mangad, Arvind & Diniz, Fernando Cezar Mariano, 2016. "Cold start idle emissions from a modern Tier-4 turbo-charged diesel engine fueled with diesel-biodiesel, diesel-biodiesel-ethanol, and diesel-biodiesel-diethyl ether blends," Applied Energy, Elsevier, vol. 180(C), pages 52-65.
    7. Bozbas, Kahraman, 2008. "Biodiesel as an alternative motor fuel: Production and policies in the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(2), pages 542-552, February.
    8. Gürü, Metin & Koca, Atilla & Can, Özer & Çınar, Can & Şahin, Fatih, 2010. "Biodiesel production from waste chicken fat based sources and evaluation with Mg based additive in a diesel engine," Renewable Energy, Elsevier, vol. 35(3), pages 637-643.
    9. Jaichandar, S. & Annamalai, K., 2012. "Influences of re-entrant combustion chamber geometry on the performance of Pongamia biodiesel in a DI diesel engine," Energy, Elsevier, vol. 44(1), pages 633-640.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Solmaz, Hamit & Ardebili, Seyed Mohammad Safieddin & Calam, Alper & Yılmaz, Emre & İpci, Duygu, 2021. "Prediction of performance and exhaust emissions of a CI engine fueled with multi-wall carbon nanotube doped biodiesel-diesel blends using response surface method," Energy, Elsevier, vol. 227(C).
    2. Hoseini, S.S. & Najafi, G. & Ghobadian, B. & Mamat, Rizalman & Sidik, Nor Azwadi Che & Azmi, W.H., 2017. "The effect of combustion management on diesel engine emissions fueled with biodiesel-diesel blends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 307-331.
    3. Chang, Yu-Cheng & Lee, Wen-Jhy & Wu, Tser Son & Wu, Chang-Yu & Chen, Shui-Jen, 2014. "Use of water containing acetone–butanol–ethanol for NOx-PM (nitrogen oxide-particulate matter) trade-off in the diesel engine fueled with biodiesel," Energy, Elsevier, vol. 64(C), pages 678-687.
    4. Das, Amar Kumar & Sahu, Santosh Kumar & Panda, Achyut Kumar, 2022. "Current status and prospects of alternate liquid transportation fuels in compression ignition engines: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    5. Mofijur, M. & Masjuki, H.H. & Kalam, M.A. & Ashrafur Rahman, S.M. & Mahmudul, H.M., 2015. "Energy scenario and biofuel policies and targets in ASEAN countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 51-61.
    6. Mat Yasin, Mohd Hafizil & Mamat, Rizalman & Najafi, G. & Ali, Obed Majeed & Yusop, Ahmad Fitri & Ali, Mohd Hafiz, 2017. "Potentials of palm oil as new feedstock oil for a global alternative fuel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1034-1049.
    7. Calder, Jorge & Roy, Murari Mohon & Wang, Wilson, 2018. "Performance and emissions of a diesel engine fueled by biodiesel-diesel blends with recycled expanded polystyrene and fuel stabilizing additive," Energy, Elsevier, vol. 149(C), pages 204-212.
    8. Kumar, Niraj & Varun, & Chauhan, Sant Ram, 2013. "Performance and emission characteristics of biodiesel from different origins: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 633-658.
    9. Dwivedi, Gaurav & Sharma, M.P., 2014. "Prospects of biodiesel from Pongamia in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 114-122.
    10. Aghbashlo, Mortaza & Tabatabaei, Meisam & Mohammadi, Pouya & Mirzajanzadeh, Mehrdad & Ardjmand, Mehdi & Rashidi, Alimorad, 2016. "Effect of an emission-reducing soluble hybrid nanocatalyst in diesel/biodiesel blends on exergetic performance of a DI diesel engine," Renewable Energy, Elsevier, vol. 93(C), pages 353-368.
    11. Chakraborty, Rajat & Gupta, Abhishek.K. & Chowdhury, Ratul, 2014. "Conversion of slaughterhouse and poultry farm animal fats and wastes to biodiesel: Parametric sensitivity and fuel quality assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 120-134.
    12. S. M. Ashrafur Rahman & I. M. Rizwanul Fattah & Hwai Chyuan Ong & M. F. M. A. Zamri, 2021. "State-of-the-Art of Strategies to Reduce Exhaust Emissions from Diesel Engine Vehicles," Energies, MDPI, vol. 14(6), pages 1-24, March.
    13. Shi, Guoliang & Yu, Feng & Wang, Yan & Pan, Dahai & Wang, Huigang & Li, Ruifeng, 2016. "A novel one-pot synthesis of tetragonal sulfated zirconia catalyst with high activity for biodiesel production from the transesterification of soybean oil," Renewable Energy, Elsevier, vol. 92(C), pages 22-29.
    14. Caires, Anderson R.L. & Scherer, Marisa D. & De Souza, José E. & Oliveira, Samuel L. & M'Peko, Jean-Claude, 2014. "The role of viscosity in the fluorescence behavior of the diesel/biodiesel blends," Renewable Energy, Elsevier, vol. 63(C), pages 388-391.
    15. Deb, Madhujit & Debbarma, Bishop & Majumder, Arindam & Banerjee, Rahul, 2016. "Performance –emission optimization of a diesel-hydrogen dual fuel operation: A NSGA II coupled TOPSIS MADM approach," Energy, Elsevier, vol. 117(P1), pages 281-290.
    16. Ho, Sze-Hwee & Wong, Yiik-Diew & Chang, Victor Wei-Chung, 2014. "Evaluating the potential of biodiesel (via recycled cooking oil) use in Singapore, an urban city," Resources, Conservation & Recycling, Elsevier, vol. 91(C), pages 117-124.
    17. Peng-Lim, Boey & Ganesan, Shangeetha & Maniam, Gaanty Pragas & Khairuddean, Melati, 2012. "Sequential conversion of high free fatty acid oils into biodiesel using a new catalyst system," Energy, Elsevier, vol. 46(1), pages 132-139.
    18. Patel, Akash & Gami, Bharat & Patel, Pankaj & Patel, Beena, 2017. "Microalgae: Antiquity to era of integrated technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 535-547.
    19. Bose, Probir Kumar & Deb, Madhujit & Banerjee, Rahul & Majumder, Arindam, 2013. "Multi objective optimization of performance parameters of a single cylinder diesel engine running with hydrogen using a Taguchi-fuzzy based approach," Energy, Elsevier, vol. 63(C), pages 375-386.
    20. Liu, Junheng & Sun, Ping & Huang, He & Meng, Jian & Yao, Xiaohua, 2017. "Experimental investigation on performance, combustion and emission characteristics of a common-rail diesel engine fueled with polyoxymethylene dimethyl ethers-diesel blends," Applied Energy, Elsevier, vol. 202(C), pages 527-536.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:11:p:8913-:d:1161260. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.