IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i11p8713-d1157955.html
   My bibliography  Save this article

Study on Rock and Surface Subsidence Laws of Super-High Water Material Backfilling and Mining Technology: A Case Study in Hengjian Coal Mine

Author

Listed:
  • Ming Li

    (College of Geoscience and Surveying Engineering, China University of Mining & Technology (Beijing), Beijing 100083, China)

  • Yueguan Yan

    (College of Geoscience and Surveying Engineering, China University of Mining & Technology (Beijing), Beijing 100083, China)

  • Huayang Dai

    (College of Geoscience and Surveying Engineering, China University of Mining & Technology (Beijing), Beijing 100083, China)

  • Zhaojiang Zhang

    (College of Mining and Geomatics, Hebei University of Engineering, Handan 056038, China)

Abstract

Research on the rock and surface subsidence laws of super-high water material backfilling and mining technology can provide a scientific basis for liberating coal resources that are deposited under buildings, railways, and bodies of water. Using field measurements, numerical simulations, and theoretical analyses to study the geological mining conditions of the Hengjian Mine in Handan, Hebei Province, this research comprehensively analyzes the dynamic and static deformation laws of rock and surface subsidence, reveals the subsidence control mechanism, complements existing studies and helps improve the feasibility of new technology in engineering practices. This study shows that rock and surface subsidence values are smaller when the super-high water material backfilling and mining technology are used, and the surface movement parameters are smaller than those of the fully caving mining method. The backfilling material supports the rock load above the mining area and suppresses the rock and surface subsidence. In addition, the super-high water backfilling material limits the height of the developing stress arch above the mining area, thus reducing the range of deformation in the rock and surface movement. In engineering practice, the development of the stress arch can be controlled by increasing the backfilling rate and the strength of the backfilling material. With the above-mentioned discoveries, this research is of great significance to the promotion and application of super-high water material backfilling and mining technology and the liberation of deposited coal resources.

Suggested Citation

  • Ming Li & Yueguan Yan & Huayang Dai & Zhaojiang Zhang, 2023. "Study on Rock and Surface Subsidence Laws of Super-High Water Material Backfilling and Mining Technology: A Case Study in Hengjian Coal Mine," Sustainability, MDPI, vol. 15(11), pages 1-22, May.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:11:p:8713-:d:1157955
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/11/8713/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/11/8713/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dacian Paul Marian & Ilie Onica & Ramona-Rafila Marian & Dacian-Andrei Floarea, 2020. "Finite Element Analysis of the State of Stresses on the Structures of Buildings Influenced by Underground Mining of Hard Coal Seams in the Jiu Valley Basin (Romania)," Sustainability, MDPI, vol. 12(4), pages 1-25, February.
    2. Adam Smoliński & Dmyto Malashkevych & Mykhailo Petlovanyi & Kanay Rysbekov & Vasyl Lozynskyi & Kateryna Sai, 2022. "Research into Impact of Leaving Waste Rocks in the Mined-Out Space on the Geomechanical State of the Rock Mass Surrounding the Longwall Face," Energies, MDPI, vol. 15(24), pages 1-16, December.
    3. Shaojie Chen & Dawei Yin & Fengwei Cao & Yong Liu & Kaiqiang Ren, 2016. "An overview of integrated surface subsidence-reducing technology in mining areas of China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 1129-1145, March.
    4. Lacey, Justine & Malakar, Yuwan & McCrea, Rod & Moffat, Kieren, 2019. "Public perceptions of established and emerging mining technologies in Australia," Resources Policy, Elsevier, vol. 62(C), pages 125-135.
    5. Shaojie Chen & Dawei Yin & Fengwei Cao & Yong Liu & Kaiqiang Ren, 2016. "An overview of integrated surface subsidence-reducing technology in mining areas of China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 1129-1145, March.
    6. Katja Ohenoja & Janne Pesonen & Juho Yliniemi & Mirja Illikainen, 2020. "Utilization of Fly Ashes from Fluidized Bed Combustion: A Review," Sustainability, MDPI, vol. 12(7), pages 1-26, April.
    7. Krzysztof Skrzypkowski, 2020. "Decreasing Mining Losses for the Room and Pillar Method by Replacing the Inter-Room Pillars by the Construction of Wooden Cribs Filled with Waste Rocks," Energies, MDPI, vol. 13(14), pages 1-20, July.
    8. Anna Kopeć & Paweł Trybała & Dariusz Głąbicki & Anna Buczyńska & Karolina Owczarz & Natalia Bugajska & Patrycja Kozińska & Monika Chojwa & Agata Gattner, 2020. "Application of Remote Sensing, GIS and Machine Learning with Geographically Weighted Regression in Assessing the Impact of Hard Coal Mining on the Natural Environment," Sustainability, MDPI, vol. 12(22), pages 1-26, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Krzysztof Skrzypkowski, 2021. "Determination of the Backfilling Time for the Zinc and Lead Ore Deposits with Application of the BackfillCAD Model," Energies, MDPI, vol. 14(11), pages 1-19, May.
    2. Wenhao Cao & Xufeng Wang & Peng Li & Dongsheng Zhang & Chundong Sun & Dongdong Qin, 2018. "Wide Strip Backfill Mining for Surface Subsidence Control and Its Application in Critical Mining Conditions of a Coal Mine," Sustainability, MDPI, vol. 10(3), pages 1-16, March.
    3. Xingdong Zhao & Qiankun Zhu, 2020. "Analysis of the surface subsidence induced by sublevel caving based on GPS monitoring and numerical simulation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 3063-3083, September.
    4. Yihe Yu & Liqiang Ma & Dongsheng Zhang, 2019. "Characteristics of Roof Ground Subsidence While Applying a Continuous Excavation Continuous Backfill Method in Longwall Mining," Energies, MDPI, vol. 13(1), pages 1-20, December.
    5. Hao Li & Boyang Zhang & Haibo Bai & Jianjun Wu & Qingbin Meng & Ning Xiao & Feng Li & Guangming Wu, 2018. "Surface Water Resource Protection in a Mining Process under Varying Strata Thickness—A Case Study of Buliangou Coal Mine, China," Sustainability, MDPI, vol. 10(12), pages 1-16, December.
    6. Duo, Zhang & Xuexue, Liu & Hu, Wen & Shoushi, Zhang & Hongquan, Wang & Yi, Sun & Hao, Feng, 2024. "Effect of nucleating agents on fire prevention of dry ice from compound inert gas," Energy, Elsevier, vol. 286(C).
    7. Wenqi Huo & Huaizhan Li & Guangli Guo & Yuezong Wang & Yafei Yuan, 2023. "Surface Subsidence Prediction Method for Backfill Mining in Shallow Coal Seams with Hard Roofs for Building Protection," Sustainability, MDPI, vol. 15(22), pages 1-18, November.
    8. Junwen Cao & Ting Liu & Yu Shi & Baiquan Lin & Jiahao Shen & Youping Xu & Xiangming Gong & Yanchi Liu, 2023. "Strata Movement of Overburden-Separation Grouting Working Face and Its Influence on Gas Emission during Mining," Sustainability, MDPI, vol. 15(17), pages 1-19, August.
    9. Hengjie Luan & Yujing Jiang & Huili Lin & Yahua Wang, 2017. "A New Thin Seam Backfill Mining Technology and Its Application," Energies, MDPI, vol. 10(12), pages 1-16, December.
    10. Jinchao Li & Fei Gao & Jiaguo Lu, 2019. "An application of InSAR time-series analysis for the assessment of mining-induced structural damage in Panji Mine, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(1), pages 243-258, May.
    11. Jiaxiao Ma & Nan Yan & Mingyi Zhang & Junwei Liu & Xiaoyu Bai & Yonghong Wang, 2020. "Mechanical Characteristics of Soda Residue Soil Incorporating Different Admixture: Reuse of Soda Residue," Sustainability, MDPI, vol. 12(14), pages 1-19, July.
    12. Yujiang Zhang & Yining Wang & Bingyuan Cui & Guorui Feng & Shuai Zhang & Chunwang Zhang & Zhengjun Zhang, 2023. "A Disturbed Voussoir Beam Structure Mechanical Model and Its Application in Feasibility Determination of Upward Mining," Energies, MDPI, vol. 16(20), pages 1-18, October.
    13. Munawar, Muhammad Assad & Khoja, Asif Hussain & Naqvi, Salman Raza & Mehran, Muhammad Taqi & Hassan, Muhammad & Liaquat, Rabia & Dawood, Usama Fida, 2021. "Challenges and opportunities in biomass ash management and its utilization in novel applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    14. Woźniak, Justyna & Jurczyk, Weronika, 2020. "Social and environmental activities in the Polish mining region in the context of CSR," Resources Policy, Elsevier, vol. 65(C).
    15. Jin, Haifeng, 2023. "Analyzing factors and resource policymaking options for sustainable resource management and carbon neutrality in mining industry: Empirical study in China," Resources Policy, Elsevier, vol. 86(PB).
    16. Marc Fadel & Eliane Farah & Nansi Fakhri & Frédéric Ledoux & Dominique Courcot & Charbel Afif, 2024. "A Comprehensive Review of PM-Related Studies in Industrial Proximity: Insights from the East Mediterranean Middle East Region," Sustainability, MDPI, vol. 16(20), pages 1-44, October.
    17. Elżbieta Jarosz-Krzemińska & Joanna Poluszyńska, 2020. "Repurposing Fly Ash Derived from Biomass Combustion in Fluidized Bed Boilers in Large Energy Power Plants as a Mineral Soil Amendment," Energies, MDPI, vol. 13(18), pages 1-21, September.
    18. Shaokun He & Lei Gu & Jing Tian & Lele Deng & Jiabo Yin & Zhen Liao & Ziyue Zeng & Youjiang Shen & Yu Hui, 2021. "Machine Learning Improvement of Streamflow Simulation by Utilizing Remote Sensing Data and Potential Application in Guiding Reservoir Operation," Sustainability, MDPI, vol. 13(7), pages 1-15, March.
    19. Chana Phutthananon & Niyawan Tippracha & Pornkasem Jongpradist & Jukkrawut Tunsakul & Weerachart Tangchirapat & Pitthaya Jamsawang, 2023. "Investigation of Strength and Microstructural Characteristics of Blended Cement-Admixed Clay with Bottom Ash," Sustainability, MDPI, vol. 15(4), pages 1-18, February.
    20. Krzysztof Skrzypkowski, 2020. "Comparative Analysis of the Mining Cribs Models Filled with Gangue," Energies, MDPI, vol. 13(20), pages 1-18, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:11:p:8713-:d:1157955. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.