IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i12p2023-d121286.html
   My bibliography  Save this article

A New Thin Seam Backfill Mining Technology and Its Application

Author

Listed:
  • Hengjie Luan

    (College of Mining and Safety Engineering, Shandong University of Science and Technology, Qingdao 266590, China
    State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China)

  • Yujing Jiang

    (College of Mining and Safety Engineering, Shandong University of Science and Technology, Qingdao 266590, China
    State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China
    Graduate School of Engineering, Nagasaki University, Nagasaki 852-8521, Japan)

  • Huili Lin

    (China Coal Research Institute, Beijing 100013, China)

  • Yahua Wang

    (College of Mining and Safety Engineering, Shandong University of Science and Technology, Qingdao 266590, China
    State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China)

Abstract

Backfill mining is an effective way to control ground subsidence and govern gangue. To solve the problem of thin coal seam mining under villages, a new thin seam backfill mining technology was proposed. This paper investigated a reasonable proportion of filling materials by experiments, designed the filling system and introduced key technologies for thin seam working face filling. Finally, an industrial test of thin seam backfill mining technology was carried out in the C1661 working face, Beixu Coal Mine. The results show that the developed filling material meets both the pumping liquidity and strength requirements of the filling body during the early and late stages. The design and equipment selection of the paste filling system were reasonable. By using the key technologies for thin seam working face filling, the time needed for working face filling, the connection and disconnection of the filling pipeline and gob-side entry retaining were all greatly shortened. The labor intensity of the workers was reduced, and the mechanization level of the mine was improved. A fill mining length of 480 m was successfully completed. With effective roof subsidence control, the ground subsidence can be reduced, and good results can be achieved. This study can contribute to the development of backfill mining in thin coal seams.

Suggested Citation

  • Hengjie Luan & Yujing Jiang & Huili Lin & Yahua Wang, 2017. "A New Thin Seam Backfill Mining Technology and Its Application," Energies, MDPI, vol. 10(12), pages 1-16, December.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:12:p:2023-:d:121286
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/12/2023/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/12/2023/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nan Zhou & Jixiong Zhang & Hao Yan & Meng Li, 2017. "Deformation Behavior of Hard Roofs in Solid Backfill Coal Mining Using Physical Models," Energies, MDPI, vol. 10(4), pages 1-20, April.
    2. Shaojie Chen & Dawei Yin & Fengwei Cao & Yong Liu & Kaiqiang Ren, 2016. "An overview of integrated surface subsidence-reducing technology in mining areas of China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 1129-1145, March.
    3. Fengshan Ma & Haijun Zhao & Renmao Yuan & Jie Guo, 2015. "Ground movement resulting from underground backfill mining in a nickel mine (Gansu Province, China)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(3), pages 1475-1490, July.
    4. Xinguo Zhang & Jia Lin & Jinxiao Liu & Fei Li & Zhenzhong Pang, 2017. "Investigation of Hydraulic-Mechanical Properties of Paste Backfill Containing Coal Gangue-Fly Ash and Its Application in an Underground Coal Mine," Energies, MDPI, vol. 10(9), pages 1-19, September.
    5. Shaojie Chen & Dawei Yin & Fengwei Cao & Yong Liu & Kaiqiang Ren, 2016. "An overview of integrated surface subsidence-reducing technology in mining areas of China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 1129-1145, March.
    6. Yanli Huang & Jixiong Zhang & Wei Yin & Qiang Sun, 2017. "Analysis of Overlying Strata Movement and Behaviors in Caving and Solid Backfilling Mixed Coal Mining," Energies, MDPI, vol. 10(7), pages 1-16, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuai Li & Zheng Yu & Haoxuan Yu & Xinmin Wang, 2022. "The Recent Progress China Has Made in High-Concentration Backfill," Sustainability, MDPI, vol. 14(5), pages 1-18, February.
    2. Xuming Zhou & Haotian Li & Xuelong Li & Jianwei Wang & Jingjing Meng & Mingze Li & Chengwei Mei, 2022. "Research on Gob-Side Entry Retaining Mining of Fully Mechanized Working Face in Steeply Inclined Coal Seam: A Case in Xinqiang Coal Mine," Sustainability, MDPI, vol. 14(16), pages 1-16, August.
    3. Dong Wang & Yujing Jiang & Xiaoming Sun & Hengjie Luan & Hui Zhang, 2019. "Nonlinear Large Deformation Mechanism and Stability Control of Deep Soft Rock Roadway: A Case Study in China," Sustainability, MDPI, vol. 11(22), pages 1-20, November.
    4. Hao Li & Boyang Zhang & Haibo Bai & Jianjun Wu & Qingbin Meng & Ning Xiao & Feng Li & Guangming Wu, 2018. "Surface Water Resource Protection in a Mining Process under Varying Strata Thickness—A Case Study of Buliangou Coal Mine, China," Sustainability, MDPI, vol. 10(12), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yihe Yu & Liqiang Ma & Dongsheng Zhang, 2019. "Characteristics of Roof Ground Subsidence While Applying a Continuous Excavation Continuous Backfill Method in Longwall Mining," Energies, MDPI, vol. 13(1), pages 1-20, December.
    2. Krzysztof Skrzypkowski, 2021. "Determination of the Backfilling Time for the Zinc and Lead Ore Deposits with Application of the BackfillCAD Model," Energies, MDPI, vol. 14(11), pages 1-19, May.
    3. Xingdong Zhao & Qiankun Zhu, 2020. "Analysis of the surface subsidence induced by sublevel caving based on GPS monitoring and numerical simulation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 3063-3083, September.
    4. Wenhao Cao & Xufeng Wang & Peng Li & Dongsheng Zhang & Chundong Sun & Dongdong Qin, 2018. "Wide Strip Backfill Mining for Surface Subsidence Control and Its Application in Critical Mining Conditions of a Coal Mine," Sustainability, MDPI, vol. 10(3), pages 1-16, March.
    5. Ming Li & Yueguan Yan & Huayang Dai & Zhaojiang Zhang, 2023. "Study on Rock and Surface Subsidence Laws of Super-High Water Material Backfilling and Mining Technology: A Case Study in Hengjian Coal Mine," Sustainability, MDPI, vol. 15(11), pages 1-22, May.
    6. Hao Li & Boyang Zhang & Haibo Bai & Jianjun Wu & Qingbin Meng & Ning Xiao & Feng Li & Guangming Wu, 2018. "Surface Water Resource Protection in a Mining Process under Varying Strata Thickness—A Case Study of Buliangou Coal Mine, China," Sustainability, MDPI, vol. 10(12), pages 1-16, December.
    7. Duo, Zhang & Xuexue, Liu & Hu, Wen & Shoushi, Zhang & Hongquan, Wang & Yi, Sun & Hao, Feng, 2024. "Effect of nucleating agents on fire prevention of dry ice from compound inert gas," Energy, Elsevier, vol. 286(C).
    8. Wenqi Huo & Huaizhan Li & Guangli Guo & Yuezong Wang & Yafei Yuan, 2023. "Surface Subsidence Prediction Method for Backfill Mining in Shallow Coal Seams with Hard Roofs for Building Protection," Sustainability, MDPI, vol. 15(22), pages 1-18, November.
    9. Weiyong Lu & Changchun He & Xin Zhang, 2020. "Height of overburden fracture based on key strata theory in longwall face," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-15, January.
    10. Junwen Cao & Ting Liu & Yu Shi & Baiquan Lin & Jiahao Shen & Youping Xu & Xiangming Gong & Yanchi Liu, 2023. "Strata Movement of Overburden-Separation Grouting Working Face and Its Influence on Gas Emission during Mining," Sustainability, MDPI, vol. 15(17), pages 1-19, August.
    11. Jinchao Li & Fei Gao & Jiaguo Lu, 2019. "An application of InSAR time-series analysis for the assessment of mining-induced structural damage in Panji Mine, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(1), pages 243-258, May.
    12. Wen Zhai & Wei Li & Yanli Huang & Shenyang Ouyang & Kun Ma & Junmeng Li & Huadong Gao & Peng Zhang, 2020. "A Case Study of the Water Abundance Evaluation of Roof Aquifer Based on the Development Height of Water-Conducting Fracture Zone," Energies, MDPI, vol. 13(16), pages 1-16, August.
    13. Wenlong Shen & Meng Wang & Zhengzheng Cao & Faqiang Su & Hua Nan & Xuelong Li, 2019. "Mining-Induced Failure Criteria of Interactional Hard Roof Structures: A Case Study," Energies, MDPI, vol. 12(15), pages 1-17, August.
    14. Jun Guo & Guorui Feng & Pengfei Wang & Tingye Qi & Xiaorong Zhang & Yonggan Yan, 2018. "Roof Strata Behavior and Support Resistance Determination for Ultra-Thick Longwall Top Coal Caving Panel: A Case Study of the Tashan Coal Mine," Energies, MDPI, vol. 11(5), pages 1-19, April.
    15. Qihao Sun & Fengshan Ma & Jie Guo & Guang Li & Xuelei Feng, 2020. "Deformation Failure Mechanism of Deep Vertical Shaft in Jinchuan Mining Area," Sustainability, MDPI, vol. 12(6), pages 1-23, March.
    16. Ningbo Zhang & Changyou Liu & Baobao Chen, 2018. "A Case Study of Presplitting Blasting Parameters of Hard and Massive Roof Based on the Interaction between Support and Overlying Strata," Energies, MDPI, vol. 11(6), pages 1-14, May.
    17. Kaizong Xia & Congxin Chen & Kuoyu Yang & Haina Zhang & Hansong Pang, 2020. "A case study on the characteristics of footwall ground deformation and movement and their mechanisms," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(1), pages 1039-1077, October.
    18. André Vervoort, 2020. "The Time Duration of the Effects of Total Extraction Mining Methods on Surface Movement," Energies, MDPI, vol. 13(16), pages 1-12, August.
    19. Guang Li & Fengshan Ma & Gang Liu & Haijun Zhao & Jie Guo, 2019. "A Strain-Softening Constitutive Model of Heterogeneous Rock Mass Considering Statistical Damage and Its Application in Numerical Modeling of Deep Roadways," Sustainability, MDPI, vol. 11(8), pages 1-19, April.
    20. Yao Lu & Ning Jiang & Wei Lu & Meng Zhang & Dezhi Kong & Mengtang Xu & Changxiang Wang, 2022. "Experimental Study on Deformation Characteristics of Gangue Backfill Zone under the Condition of Natural Water in Deep Mines," Sustainability, MDPI, vol. 14(23), pages 1-16, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:12:p:2023-:d:121286. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.