IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i11p8690-d1157399.html
   My bibliography  Save this article

MaaS Adoption and Sustainability for Systematic Trips: Estimation of Environmental Impacts in a Medium-Sized City

Author

Listed:
  • Riccardo Ceccato

    (Department of Civil, Architectural and Environmental Engineering, University of Padua, 35131 Padua, Italy)

  • Andrea Baldassa

    (Department of Civil, Architectural and Environmental Engineering, University of Padua, 35131 Padua, Italy
    Mobility and Behavior Research Centre—MoBe, University of Padua, 35131 Padua, Italy)

  • Federico Orsini

    (Department of Civil, Architectural and Environmental Engineering, University of Padua, 35131 Padua, Italy
    Mobility and Behavior Research Centre—MoBe, University of Padua, 35131 Padua, Italy)

  • Riccardo Rossi

    (Department of Civil, Architectural and Environmental Engineering, University of Padua, 35131 Padua, Italy
    Mobility and Behavior Research Centre—MoBe, University of Padua, 35131 Padua, Italy)

  • Massimiliano Gastaldi

    (Department of Civil, Architectural and Environmental Engineering, University of Padua, 35131 Padua, Italy
    Mobility and Behavior Research Centre—MoBe, University of Padua, 35131 Padua, Italy
    Department of General Psychology, University of Padua, 35131 Padua, Italy)

Abstract

Mobility as a Service (MaaS) is often seen as a promising solution to address societal and environmental challenges. Despite the importance of quantifying its potential benefits, few previous works have focused on the impacts on the environment, and all of them considered large cities. This study aims to forecast the diffusion of MaaS in a medium-sized city and quantify the consequent reduction in pollutant emissions for commuting trips. Answers from a mobility survey administered to employees of the Municipality of Padua (Italy) were used to calibrate a model predicting MaaS adoption, which was applied to real working trips to estimate daily vehicle emissions savings in future scenarios with different MaaS bundles. The results indicated that the opportunity to have multimodal mobility options providing door-to-door travel is a fundamental element to ensure wide MaaS diffusion. Furthermore, public transport was confirmed to be the backbone of such a system. Compared to the current scenario, we observed up to a 41% reduction in pollutant emissions. The analysis pointed out that MaaS adoption is highly dependent on the characteristics of the proposed bundles, thus highlighting the importance of a proper design of the service and ex ante evaluation of emission savings.

Suggested Citation

  • Riccardo Ceccato & Andrea Baldassa & Federico Orsini & Riccardo Rossi & Massimiliano Gastaldi, 2023. "MaaS Adoption and Sustainability for Systematic Trips: Estimation of Environmental Impacts in a Medium-Sized City," Sustainability, MDPI, vol. 15(11), pages 1-14, May.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:11:p:8690-:d:1157399
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/11/8690/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/11/8690/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hensher, David A. & Ho, Chinh Q. & Reck, Daniel J., 2021. "Corrigendum to “Mobility as a service and private car use: Evidence from the sydney MaaS trial” [Transp. Res. Part A 145 (2021) 17–33]," Transportation Research Part A: Policy and Practice, Elsevier, vol. 149(C), pages 226-226.
    2. Ho, Chinh Q. & Mulley, Corinne & Hensher, David A., 2020. "Public preferences for mobility as a service: Insights from stated preference surveys," Transportation Research Part A: Policy and Practice, Elsevier, vol. 131(C), pages 70-90.
    3. Enoch, Marcus & Potter, Stephen, 2023. "MaaS (Mobility as a Service) market futures explored," Transport Policy, Elsevier, vol. 134(C), pages 31-40.
    4. Caiati, Valeria & Rasouli, Soora & Timmermans, Harry, 2020. "Bundling, pricing schemes and extra features preferences for mobility as a service: Sequential portfolio choice experiment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 131(C), pages 123-148.
    5. Hensher, David A. & Ho, Chinh Q. & Reck, Daniel J., 2021. "Mobility as a service and private car use: Evidence from the Sydney MaaS trial," Transportation Research Part A: Policy and Practice, Elsevier, vol. 145(C), pages 17-33.
    6. Kriswardhana, Willy & Esztergár-Kiss, Domokos, 2023. "Exploring the aspects of MaaS adoption based on college students’ preferences," Transport Policy, Elsevier, vol. 136(C), pages 113-125.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Benjamin Maas, 2022. "Literature Review of Mobility as a Service," Sustainability, MDPI, vol. 14(14), pages 1-28, July.
    2. Nikitas, Alexandros & Cotet, Corneliu & Vitel, Alexandra-Elena & Nikitas, Nikolaos & Prato, Carlo, 2024. "Transport stakeholders’ perceptions of Mobility-as-a-Service: A Q-study of cultural shift proponents, policy advocates and technology supporters," Transportation Research Part A: Policy and Practice, Elsevier, vol. 181(C).
    3. Ho, Chinh Q., 2022. "Can MaaS change users’ travel behaviour to deliver commercial and societal outcomes?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 76-97.
    4. Kayikci, Yasanur & Kabadurmus, Ozgur, 2022. "Barriers to the adoption of the mobility-as-a-service concept: The case of Istanbul, a large emerging metropolis," Transport Policy, Elsevier, vol. 129(C), pages 219-236.
    5. Chenhao Zhu & Jonah Susskind & Mario Giampieri & Hazel Backus O’Neil & Alan M. Berger, 2023. "Optimizing Sustainable Suburban Expansion with Autonomous Mobility through a Parametric Design Framework," Land, MDPI, vol. 12(9), pages 1-31, September.
    6. Lopez-Carreiro, Iria & Monzon, Andres & Lopez-Lambas, Maria E., 2021. "Comparison of the willingness to adopt MaaS in Madrid (Spain) and Randstad (The Netherlands) metropolitan areas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 152(C), pages 275-294.
    7. Laila Oubahman & Szabolcs Duleba, 2022. "A Comparative Analysis of Homogenous Groups’ Preferences by Using AIP and AIJ Group AHP-PROMETHEE Model," Sustainability, MDPI, vol. 14(10), pages 1-18, May.
    8. Hasselwander, Marc & Bigotte, Joao F. & Antunes, Antonio P. & Sigua, Ricardo G., 2022. "Towards sustainable transport in developing countries: Preliminary findings on the demand for mobility-as-a-service (MaaS) in Metro Manila," Transportation Research Part A: Policy and Practice, Elsevier, vol. 155(C), pages 501-518.
    9. Hörcher, Daniel & Graham, Daniel J., 2020. "MaaS economics: Should we fight car ownership with subscriptions to alternative modes?," Economics of Transportation, Elsevier, vol. 22(C).
    10. Xi, Haoning & Liu, Wei & Waller, S. Travis & Hensher, David A. & Kilby, Philip & Rey, David, 2023. "Incentive-compatible mechanisms for online resource allocation in Mobility-as-a-Service systems," Transportation Research Part B: Methodological, Elsevier, vol. 170(C), pages 119-147.
    11. Ho, Chinh Q. & Tirachini, Alejandro, 2024. "Mobility-as-a-Service and the role of multimodality in the sustainability of urban mobility in developing and developed countries," Transport Policy, Elsevier, vol. 145(C), pages 161-176.
    12. Duan, Sophia Xiaoxia & Tay, Richard & Molla, Alemayehu & Deng, Hepu, 2022. "Predicting Mobility as a Service (MaaS) use for different trip categories: An artificial neural network analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 166(C), pages 135-149.
    13. Zipeng Zhang & Ning Zhang, 2021. "A Novel Development Scheme of Mobility as a Service: Can It Provide a Sustainable Environment for China?," Sustainability, MDPI, vol. 13(8), pages 1-19, April.
    14. Medina-Molina, Cayetano & Pérez-Macías, Noemí & Fernández-Fernádez, José Luis, 2023. "The use of micromobility in different contexts. An explanation through the multilevel perspective and QCA," Technological Forecasting and Social Change, Elsevier, vol. 188(C).
    15. Claudia Caballini & Maria Vittoria Corazza & Valentina Costa & Ilaria Delponte & Erika Olivari, 2022. "Assessing the Feasibility of MaaS: A Contribution from Three Italian Case Studies," Sustainability, MDPI, vol. 14(24), pages 1-15, December.
    16. Kriswardhana, Willy & Esztergár-Kiss, Domokos, 2023. "Exploring the aspects of MaaS adoption based on college students’ preferences," Transport Policy, Elsevier, vol. 136(C), pages 113-125.
    17. Ye, Jianhong & Zheng, Jiaqi, 2024. "How stakeholders influence MaaS implementation? An analysis based on evolutionary game theory," Transport Policy, Elsevier, vol. 149(C), pages 198-210.
    18. Maria Vittoria Corazza & Giordano Carassiti, 2021. "Investigating Maturity Requirements to Operate Mobility as a Service: The Rome Case," Sustainability, MDPI, vol. 13(15), pages 1-31, July.
    19. Gillian Harrison & Astrid Gühnemann & Simon Shepherd, 2020. "The Business Case for a Journey Planning and Ticketing App—Comparison between a Simulation Analysis and Real-World Data," Sustainability, MDPI, vol. 12(10), pages 1-21, May.
    20. Hensher, David A. & Ho, Chinh Q. & Reck, Daniel J., 2021. "Mobility as a service and private car use: Evidence from the Sydney MaaS trial," Transportation Research Part A: Policy and Practice, Elsevier, vol. 145(C), pages 17-33.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:11:p:8690-:d:1157399. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.