IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i11p8603-d1155788.html
   My bibliography  Save this article

Natural Fibre for Geotechnical Applications: Concepts, Achievements and Challenges

Author

Listed:
  • Thanh T. Nguyen

    (Transport Research Centre (TRC), School of Civil and Environmental Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney (UTS), Sydney, NSW 2007, Australia)

  • Buddhima Indraratna

    (Transport Research Centre (TRC), School of Civil and Environmental Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney (UTS), Sydney, NSW 2007, Australia)

Abstract

Enhancing the use of natural fibre for geotechnical purposes has attracted greater attention in the past decade, mainly because of the tangible benefits that this green approach would bring to our sustainable infrastructure developments. While this topic has been subjected to often sceptical review or discussions, they usually focus on narrow aspects such as soil reinforcement, resulting in a lack of thorough assessment over different aspects and applications. The current paper hence aims to not only provide a more balanced review between theoretical concepts and practical perspectives, but also to link different functions of natural fibre that would facilitate design effectiveness. Three major geotechnical purposes of natural fibre in terms of the practice are identified and discussed, i.e., (i) soil reinforcement; (ii) enhanced drainage for soil consolidation; and (iii) filtration, separation and erosion controls. In these distinct applications, natural fibres, despite being used in different forms such as geotextiles, drains and individual fibres, often give significant contributions to improving soil structures, resulting in greater stabilization of the entire system. The key unique feature of natural fibres is their ability to generate biological bonding with soil media (i.e., biodegradation associated with reinforcement), while substantially improving the tensile strength of the soil structure, thus providing larger resistance to mud pumping, liquefaction, internal instability and erosion. Apart from successful findings and applications in practice, main challenges that are currently hampering the wider application of natural fibres will be addressed in this paper.

Suggested Citation

  • Thanh T. Nguyen & Buddhima Indraratna, 2023. "Natural Fibre for Geotechnical Applications: Concepts, Achievements and Challenges," Sustainability, MDPI, vol. 15(11), pages 1-18, May.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:11:p:8603-:d:1155788
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/11/8603/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/11/8603/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Claudia Campanale & Carmine Massarelli & Ilaria Savino & Vito Locaputo & Vito Felice Uricchio, 2020. "A Detailed Review Study on Potential Effects of Microplastics and Additives of Concern on Human Health," IJERPH, MDPI, vol. 17(4), pages 1-26, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohamad Jahja & Ali Mudatstsir & Idawati Supu & Yayu Indriati Arifin & Jayanti Rauf & Masayuki Sakakibara & Tsutomu Yamaguchi & Andi Patiware Metaragakusuma & Ivana Butolo, 2024. "How Effective Are Palm-Fiber-Based Erosion Control Blankets (ECB) against Natural Rainfall?," Sustainability, MDPI, vol. 16(4), pages 1-17, February.
    2. Wei Guo & Thanh T. Nguyen, 2023. "Recent Advancements in Geosynthetic Engineering for Sustainable Construction," Sustainability, MDPI, vol. 15(15), pages 1-3, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nawaz, Ahmad & Razzak, Shaikh Abdur, 2024. "Co-pyrolysis of biomass and different plastic waste to reduce hazardous waste and subsequent production of energy products: A review on advancement, synergies, and future prospects," Renewable Energy, Elsevier, vol. 224(C).
    2. Isabella Gambino & Francesco Bagordo & Tiziana Grassi & Alessandra Panico & Antonella De Donno, 2022. "Occurrence of Microplastics in Tap and Bottled Water: Current Knowledge," IJERPH, MDPI, vol. 19(9), pages 1-15, April.
    3. Carmen Rubio-Armendáriz & Samuel Alejandro-Vega & Soraya Paz-Montelongo & Ángel J. Gutiérrez-Fernández & Conrado J. Carrascosa-Iruzubieta & Arturo Hardisson-de la Torre, 2022. "Microplastics as Emerging Food Contaminants: A Challenge for Food Safety," IJERPH, MDPI, vol. 19(3), pages 1-14, January.
    4. Sri Widyastuti & Angga Susmana Abidin & Hikmaturrohmi Hikmaturrohmi & Bq Tri Khairina Ilhami & Nanda Sofian Hadi Kurniawan & Ahmad Jupri & Dining Aidil Candri & Andri Frediansyah & Eka Sunarwidhi Pras, 2023. "Microplastic Contamination in Different Marine Species of Bintaro Fish Market, Indonesia," Sustainability, MDPI, vol. 15(12), pages 1-14, June.
    5. Diogo A. Ferreira-Filipe & Ana Paço & Armando C. Duarte & Teresa Rocha-Santos & Ana L. Patrício Silva, 2021. "Are Biobased Plastics Green Alternatives?—A Critical Review," IJERPH, MDPI, vol. 18(15), pages 1-16, July.
    6. Andreas Brachner & Despina Fragouli & Iola F. Duarte & Patricia M. A. Farias & Sofia Dembski & Manosij Ghosh & Ivan Barisic & Daniela Zdzieblo & Jeroen Vanoirbeek & Philipp Schwabl & Winfried Neuhaus, 2020. "Assessment of Human Health Risks Posed by Nano-and Microplastics Is Currently Not Feasible," IJERPH, MDPI, vol. 17(23), pages 1-10, November.
    7. Gonca Alak & Mine Köktürk & Muhammed Atamanalp & Esat Mahmut Kocaman & Arzu Ucar & Nurinisa Esenbuğa & Sinan Özcan & Veysel Parlak, 2023. "Microplastic Abundance in Rainbow Trout Life Cycle: Step by Step," Sustainability, MDPI, vol. 15(19), pages 1-12, September.
    8. Claudia Campanale & Daniela Losacco & Mariangela Triozzi & Carmine Massarelli & Vito Felice Uricchio, 2022. "An Overall Perspective for the Study of Emerging Contaminants in Karst Aquifers," Resources, MDPI, vol. 11(11), pages 1-21, November.
    9. Chunhui Wang & Junhong Tang & Haixia Yu & Yiyi Wang & Huanxuan Li & Shaodan Xu & Gang Li & Qian Zhou, 2022. "Microplastic Pollution in the Soil Environment: Characteristics, Influencing Factors, and Risks," Sustainability, MDPI, vol. 14(20), pages 1-14, October.
    10. Shampa Ghosh & Jitendra Kumar Sinha & Soumya Ghosh & Kshitij Vashisth & Sungsoo Han & Rakesh Bhaskar, 2023. "Microplastics as an Emerging Threat to the Global Environment and Human Health," Sustainability, MDPI, vol. 15(14), pages 1-17, July.
    11. Benjamin Gazeau & Roberto Minunno & Atiq Zaman & Faiz Shaikh, 2024. "Elevating Recycling Standards: Global Requirements for Plastic Traceability and Quality Testing," Sustainability, MDPI, vol. 16(12), pages 1-16, June.
    12. Antonio Ragusa & Maria Matta & Loredana Cristiano & Roberto Matassa & Ezio Battaglione & Alessandro Svelato & Caterina De Luca & Sara D’Avino & Alessandra Gulotta & Mauro Ciro Antonio Rongioletti & Pi, 2022. "Deeply in Plasticenta: Presence of Microplastics in the Intracellular Compartment of Human Placentas," IJERPH, MDPI, vol. 19(18), pages 1-22, September.
    13. Erik D. Slawsky & Joel C. Hoffman & Kristen N. Cowan & Kristen M. Rappazzo, 2022. "Beneficial Use Impairments, Degradation of Aesthetics, and Human Health: A Review," IJERPH, MDPI, vol. 19(10), pages 1-17, May.
    14. Stefania D'Angelo & Rosaria Meccariello, 2021. "Microplastics: A Threat for Male Fertility," IJERPH, MDPI, vol. 18(5), pages 1-11, March.
    15. Adam Krajewski & Agnieszka Hejduk & Leszek Hejduk, 2022. "First Evidence of Microplastic Presence in Bed Load Sediments of a Small Urban Stream in Warsaw," Sustainability, MDPI, vol. 14(23), pages 1-13, November.
    16. Edris Bazrafshan & Hamid Reza Zakeri & Melissa Gurgel Adeodato Vieira & Zahra Derakhshan & Leili Mohammadi & Amin Mohammadpour & Amin Mousavi Khaneghah, 2022. "Slaughterhouse Wastewater Treatment by Integrated Chemical Coagulation and Electro-Fenton Processes," Sustainability, MDPI, vol. 14(18), pages 1-15, September.
    17. Leonardo Alberghini & Alessandro Truant & Serena Santonicola & Giampaolo Colavita & Valerio Giaccone, 2022. "Microplastics in Fish and Fishery Products and Risks for Human Health: A Review," IJERPH, MDPI, vol. 20(1), pages 1-17, December.
    18. Haigang Zhang & Yilin Hou & Wenjin Zhao & Hui Na, 2022. "Control Strategies of Plastic Biodegradation through Adjusting Additives Ratios Using In Silico Approaches Associated with Proportional Factorial Experimental Design," IJERPH, MDPI, vol. 19(9), pages 1-16, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:11:p:8603-:d:1155788. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.