IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i10p8286-d1150850.html
   My bibliography  Save this article

Study on the Effect of External Air Supply and Temperature Control on Coal Spontaneous Combustion Characteristics

Author

Listed:
  • Changkui Lei

    (College of Safety and Emergency Management Engineering, Taiyuan University of Technology, Taiyuan 030024, China)

  • Xueqiang Shi

    (School of Environment and Safety Engineering, North University of China, Taiyuan 030051, China)

  • Lijuan Jiang

    (Faculty of Business and Economics, University of Pécs, 7626 Pécs, Hungary)

  • Cunbao Deng

    (College of Safety and Emergency Management Engineering, Taiyuan University of Technology, Taiyuan 030024, China)

  • Jun Nian

    (College of Safety and Emergency Management Engineering, Taiyuan University of Technology, Taiyuan 030024, China)

  • Yabin Gao

    (College of Safety and Emergency Management Engineering, Taiyuan University of Technology, Taiyuan 030024, China)

Abstract

Coal spontaneous combustion in underground mine goaf has a great impact on coal mining. The temperature-programmed experiment is a commonly used and effective method for studying the characteristics of coal spontaneous combustion. Aiming at the problem that the numerical simulation of coal spontaneous combustion characteristics under the condition of external air supply and temperature control in a temperature-programmed experiment is insufficient, a multi-physical field coupling numerical model of coal spontaneous combustion in the temperature-programmed experiment is established. The variation characteristics of coal temperature, oxygen, and oxidation products under external air supply and temperature control were studied. The results show that the numerical simulation results are consistent with the experimental results. With the increase in temperature, the volume fractions of oxygen and carbon dioxide decrease and increase, respectively. As the air supply volume increases, the oxygen volume fraction at the outlet increases, and the peak value of the oxygen volume fraction change rate exhibits a “hysteresis” feature, and the time corresponding to the peak value increases. Moreover, the temperature change rate increases. With the increase in the heating rate, the peak value of the oxygen volume fraction change rate increases and shows an “early appearance” characteristic, at the same time, the maximum coal temperature displays a linear increase trend.

Suggested Citation

  • Changkui Lei & Xueqiang Shi & Lijuan Jiang & Cunbao Deng & Jun Nian & Yabin Gao, 2023. "Study on the Effect of External Air Supply and Temperature Control on Coal Spontaneous Combustion Characteristics," Sustainability, MDPI, vol. 15(10), pages 1-15, May.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:10:p:8286-:d:1150850
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/10/8286/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/10/8286/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Cai-Ping & Deng, Yin & Xiao, Yang & Deng, Jun & Shu, Chi-Min & Jiang, Zhi-Gang, 2022. "Gas-heat characteristics and oxidation kinetics of coal spontaneous combustion in heating and decaying processes," Energy, Elsevier, vol. 250(C).
    2. Shi, Xueqiang & Chen, Xiaokun & Zhang, Yutao & Zhang, Yuanbo & Guo, Ruizhi & Zhao, Tenglong & Liu, Rui, 2022. "Numerical simulation of coal dust self–ignition and combustion under inclination conditions," Energy, Elsevier, vol. 239(PC).
    3. Zhang, Yanni & Shu, Pan & Deng, Jun & Duan, Zhengxiao & Li, Lele & Zhang, Lulu, 2022. "Analysis of oxidation pathways for characteristic groups in coal spontaneous combustion," Energy, Elsevier, vol. 254(PA).
    4. Kun Xu & Shuang Li & Jiao Liu & Cheng Lu & Guangzhe Xue & Zhengquan Xu & Chao He, 2022. "Evaluation Cloud Model of Spontaneous Combustion Fire Risk in Coal Mines by Fusing Interval Gray Number and DEMATEL," Sustainability, MDPI, vol. 14(23), pages 1-13, November.
    5. Zhang, Yuanbo & Zhang, Yutao & Li, Yaqing & Shi, Xueqiang & Che, Bo, 2022. "Determination of ignition temperature and kinetics and thermodynamics analysis of high-volatile coal based on differential derivative thermogravimetry," Energy, Elsevier, vol. 240(C).
    6. Kong, Xiangguo & He, Di & Liu, Xianfeng & Wang, Enyuan & Li, Shugang & Liu, Ting & Ji, Pengfei & Deng, Daiyu & Yang, Songrui, 2022. "Strain characteristics and energy dissipation laws of gas-bearing coal during impact fracture process," Energy, Elsevier, vol. 242(C).
    7. Zhao, Jingyu & Deng, Jun & Wang, Tao & Song, Jiajia & Zhang, Yanni & Shu, Chi-Min & Zeng, Qiang, 2019. "Assessing the effectiveness of a high-temperature-programmed experimental system for simulating the spontaneous combustion properties of bituminous coal through thermokinetic analysis of four oxidatio," Energy, Elsevier, vol. 169(C), pages 587-596.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Xingguo & Dai, Guanglong & Qin, Ruxiang & Zhou, Liang & Li, Jinhu & Li, Jinliang, 2024. "Spontaneous combustion characteristics of coal based on the oxygen consumption rate integral," Energy, Elsevier, vol. 288(C).
    2. Gao, Mingqiang & Cheng, Cheng & Miao, Zhenyong & Wan, Keji & He, Qiongqiong, 2023. "Physicochemical properties, combustion kinetics and thermodynamics of oxidized lignite," Energy, Elsevier, vol. 268(C).
    3. Zhao, Jingyu & Hang, Gai & Song, Jiajia & Lu, Shiping & Ming, Hanqi & Chang, Jiaming & Deng, Jun & Zhang, Yanni & Shu, Chi-Min, 2023. "Spontaneous oxidation kinetics of weathered coal based upon thermogravimetric characteristics," Energy, Elsevier, vol. 275(C).
    4. Dongming Wang & Yankun Ma & Xiaofei Liu & Dexing Li & Quanlin Liu & Hengze Yang & Xuelong Li, 2024. "Improving Mining Sustainability and Safety by Monitoring Precursors of Catastrophic Failures in Loaded Granite: An Experimental Study of Acoustic Emission and Electromagnetic Radiation," Sustainability, MDPI, vol. 16(3), pages 1-16, January.
    5. Duan, Zhengxiao & Zhang, Yanni & Deng, Jun & Shu, Pan & Yao, Di, 2023. "A systematic exploration of mapping knowledge domains for free radical research related to coal," Energy, Elsevier, vol. 282(C).
    6. Huang, Jiliang & Tan, Bo & Gao, Liyang & Shao, Zhuangzhuang & Wang, Haiyan & Chen, Zhen, 2023. "A multi-channel reaction model study of key primary and secondary active groups in the low-temperature oxidation process of coal," Energy, Elsevier, vol. 283(C).
    7. Zhao, Jingyu & Wang, Tao & Deng, Jun & Shu, Chi-Min & Zeng, Qiang & Guo, Tao & Zhang, Yuxuan, 2020. "Microcharacteristic analysis of CH4 emissions under different conditions during coal spontaneous combustion with high-temperature oxidation and in situ FTIR," Energy, Elsevier, vol. 209(C).
    8. Wang, Kai & Hu, Lihong & Deng, Jun & Zhang, Yanni, 2023. "Multiscale thermal behavioral characterization of spontaneous combustion of pre-oxidized coal with different air exposure time," Energy, Elsevier, vol. 262(PA).
    9. Yue, Jiwei & Ma, Yankun & Wang, Zhaofeng & Zhang, Xi & Wang, Long & Shen, Xiaojing, 2023. "Characteristics of water migration during spontaneous imbibition in anisotropic coal," Energy, Elsevier, vol. 263(PE).
    10. Hu, Mao & Guo, Kai & Zhou, Haiqin & Shen, Fei & Zhu, Wenkun & Dai, Lichun, 2024. "Insights into the kinetics, thermodynamics and evolved gases for the pyrolysis of freshly excreted and solid-liquid separated swine manures," Energy, Elsevier, vol. 288(C).
    11. Deng, Jun & Yang, Nannan & Wang, Caiping & Yin, Deng & Xiaoyong, Zhao & He, Yongjun, 2023. "Study on staged heat transfer law of coal spontaneous combustion in deep mines," Energy, Elsevier, vol. 285(C).
    12. Liu, Hao & Li, Zenghua & Miao, Guodong & Yang, Jingjing & Wu, Xiangqiang & Li, Jiahui, 2023. "Insight into the chemical reaction process of coal during the spontaneous combustion latency," Energy, Elsevier, vol. 263(PB).
    13. Zhou, Yufang & Gao, Mingqiang & Miao, Zhenyong & Cheng, Cheng & Wan, Keji & He, Qiongqiong, 2024. "Physicochemical properties and combustion kinetics of dried lignite," Energy, Elsevier, vol. 289(C).
    14. Zhao, Li & Guanhua, Ni & Yan, Wang & Hehe, Jiang & Yongzan, Wen & Haoran, Dou & Mao, Jing, 2022. "Semi-homogeneous model of coal based on 3D reconstruction of CT images and its seepage-deformation characteristics," Energy, Elsevier, vol. 259(C).
    15. Yu, Minggao & Yang, Ning & Li, Haitao & Wang, Liang & Wu, Mingqiu & Wang, Fengchuan & Chu, Tingxiang & Wang, Kai, 2024. "Numerical investigation on the effects of axial-stress loads on the temperature-programmed oxidation characteristics of loose broken coal," Energy, Elsevier, vol. 289(C).
    16. Yang, Dingding & Peng, Kai & Zheng, Yu & Chen, Yujia & Zheng, Juan & Wang, Man & Chen, Si, 2023. "Study on the characteristics of coal and gas outburst hazard under the influence of high formation temperature in deep mines," Energy, Elsevier, vol. 268(C).
    17. Lu, Wei & Gao, Ao & Sun, Weili & Liang, Yuntao & He, Zhenglong & Li, Jinliang & Sun, Yong & Song, Shuanglin & Meng, Shaocong & Cao, Yingjiazi, 2022. "Experimental study on inhibition of spontaneous combustion of different-rank coals by high-performance m-Cresol water-based inhibitor solutions," Energy, Elsevier, vol. 261(PA).
    18. Lei Li & Ting Ren & Xiaoxing Zhong & Jiantao Wang, 2023. "Study of the Oxidation Characteristics and CO Production Mechanism of Low-Rank Coal Goaf," Energies, MDPI, vol. 16(8), pages 1-16, April.
    19. Meng, Xianliang & Sun, Jiali & Chu, Ruizhi & Fan, Lulu & Jiang, Xiaofeng & Tang, Ludeng & Zheng, Donglin, 2023. "Effect of active functional groups in coal on the release behavior of small molecule gases during low-temperature oxidation," Energy, Elsevier, vol. 273(C).
    20. Wang, Kai & Han, Tao & Deng, Jun & Zhang, Yanni, 2022. "Comparison of combustion characteristics and kinetics of Jurassic and Carboniferous-Permian coals in China," Energy, Elsevier, vol. 254(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:10:p:8286-:d:1150850. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.