IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v283y2023ics036054422302426x.html
   My bibliography  Save this article

A multi-channel reaction model study of key primary and secondary active groups in the low-temperature oxidation process of coal

Author

Listed:
  • Huang, Jiliang
  • Tan, Bo
  • Gao, Liyang
  • Shao, Zhuangzhuang
  • Wang, Haiyan
  • Chen, Zhen

Abstract

To investigate the reaction pathways of key reactive groups in coal when coal undergoes oxidation at low temperatures, the start-up stage of the reaction pathways, and the evolution of free radicals and functional groups. Firstly, according to the similarity in the types of groups, this paper classifies many reactive groups in coal and uses GaussView 6.0 to construct molecular models of primary (-CH3, –OH, –CHO, –COOH) and secondary (-R∙, –C(O)∙, –COO∙, ∙OOH) groups. Then the reaction channels of primary and secondary groups were built and verified based on the similarity of the reaction forms of the groups. The results show that both primary and secondary groups have "dual channel reactions" when coal undergoes oxidation. Channel A of the primary group reacts with O2 with a start-up stage of 70∼200 °C, and channel B reacts with ∙OH with a start-up stage of 30∼70 °C; channel C of the secondary group reacts with O2 at about 30 °C and channel D reacts with self-decomposition with a start-up stage of 70∼200 °C. The results show that oxygen insulation and cooling can be adopted according to channels A and C. Channels B, C, and D eliminate R∙ and ∙OH to efficiently prevent and control coal spontaneous combustion(CSC).

Suggested Citation

  • Huang, Jiliang & Tan, Bo & Gao, Liyang & Shao, Zhuangzhuang & Wang, Haiyan & Chen, Zhen, 2023. "A multi-channel reaction model study of key primary and secondary active groups in the low-temperature oxidation process of coal," Energy, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:energy:v:283:y:2023:i:c:s036054422302426x
    DOI: 10.1016/j.energy.2023.129032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422302426X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Yanni & Shu, Pan & Deng, Jun & Duan, Zhengxiao & Li, Lele & Zhang, Lulu, 2022. "Analysis of oxidation pathways for characteristic groups in coal spontaneous combustion," Energy, Elsevier, vol. 254(PA).
    2. Lanjun Zhang & Yujia Han & Dexin Xu & Qin Jiang & Haihui Xin & Chenhui Fu & Wenjing He, 2022. "Study on the Reaction Path of -CH 3 and -CHO Functional Groups during Coal Spontaneous Combustion: Quantum Chemistry and Experimental Research," Energies, MDPI, vol. 15(13), pages 1-16, July.
    3. Song, Bobo & Zhai, Xiaowei & Ma, Teng & Wang, Bo & Hao, Le & Zhou, Yujie, 2023. "Effect of water immersion on pore structure of bituminous coal with different metamorphic degrees," Energy, Elsevier, vol. 274(C).
    4. Xin, Haihui & Tian, Wenjiang & Zhou, Banghao & Qi, Xu-yao & Li, Jianfeng & Wu, Jinfeng & Wang, De-ming, 2023. "Pore structure evolution and oxidation characteristic change of coal treated with liquid carbon dioxide and liquid nitrogen," Energy, Elsevier, vol. 268(C).
    5. Zhao, Jingyu & Deng, Jun & Chen, Long & Wang, Tao & Song, Jiajia & Zhang, Yanni & Shu, Chi-Min & Zeng, Qiang, 2019. "Correlation analysis of the functional groups and exothermic characteristics of bituminous coal molecules during high-temperature oxidation," Energy, Elsevier, vol. 181(C), pages 136-147.
    6. Li, Jinhu & Lu, Wei & Li, Jinliang & Yang, Yongliang & Li, Zenghua, 2023. "Mutual conversion of active sites and oxygen-containing functional groups during low-temperature oxidation of coal," Energy, Elsevier, vol. 272(C).
    7. Li, Jinhu & Li, Zenghua & Yang, Yongliang & Duan, Yujian & Xu, Jun & Gao, Ruiting, 2019. "Examination of CO, CO2 and active sites formation during isothermal pyrolysis of coal at low temperatures," Energy, Elsevier, vol. 185(C), pages 28-38.
    8. Bai, Zhongze & Jiang, Xi Zhuo & Luo, Kai H., 2022. "Effects of water on pyridine pyrolysis: A reactive force field molecular dynamics study," Energy, Elsevier, vol. 238(PB).
    9. Guo, Shengli & Yan, Zhuo & Yuan, Shujie & Weile Geng,, 2021. "Inhibitory effect and mechanism of l-ascorbic acid combined with tea polyphenols on coal spontaneous combustion," Energy, Elsevier, vol. 229(C).
    10. Pan, Rongkun & Li, Cong & Chao, Jiangkun & Hu, Daimin & Jia, Hailin, 2023. "Thermal properties and microstructural evolution of coal spontaneous combustion," Energy, Elsevier, vol. 262(PA).
    11. Meng, Xianliang & Sun, Jiali & Chu, Ruizhi & Fan, Lulu & Jiang, Xiaofeng & Tang, Ludeng & Zheng, Donglin, 2023. "Effect of active functional groups in coal on the release behavior of small molecule gases during low-temperature oxidation," Energy, Elsevier, vol. 273(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Leilin & Wen, Chenchen & Li, Shengli & Yang, Mengdan, 2024. "Evolution and oxidation properties of the functional groups of coals after water immersion and air drying," Energy, Elsevier, vol. 288(C).
    2. Zhao, Xingguo & Dai, Guanglong & Qin, Ruxiang & Zhou, Liang & Li, Jinhu & Li, Jinliang, 2024. "Spontaneous combustion characteristics of coal based on the oxygen consumption rate integral," Energy, Elsevier, vol. 288(C).
    3. Zhao, Jingyu & Hang, Gai & Song, Jiajia & Lu, Shiping & Ming, Hanqi & Chang, Jiaming & Deng, Jun & Zhang, Yanni & Shu, Chi-Min, 2023. "Spontaneous oxidation kinetics of weathered coal based upon thermogravimetric characteristics," Energy, Elsevier, vol. 275(C).
    4. Li, Jin-liang & Lu, Wei & Li, Jin-hu & Zhang, Qinsong & Zhuo, Hui, 2022. "Thermodynamics of oxygen-containing intermediates and their role in coal spontaneous combustion," Energy, Elsevier, vol. 260(C).
    5. Zhang, Yifan & Yang, Yongliang & Wang, Guoqin & Li, Purui & Liu, Hao & Wang, Huazhen & Gao, Kaiyang, 2024. "Changes in physical and chemical structure and Full-stage oxidation characteristics of coal caused by igneous intrusion," Energy, Elsevier, vol. 288(C).
    6. Zhang, Xun & Zou, Jiahui & Lu, Bing & Huang, Ge & Yu, Chen & Liang, Huimin, 2023. "Experimental study on effect of mudstone on spontaneous combustion of coal," Energy, Elsevier, vol. 285(C).
    7. Lu, Wei & Gao, Ao & Sun, Weili & Liang, Yuntao & He, Zhenglong & Li, Jinliang & Sun, Yong & Song, Shuanglin & Meng, Shaocong & Cao, Yingjiazi, 2022. "Experimental study on inhibition of spontaneous combustion of different-rank coals by high-performance m-Cresol water-based inhibitor solutions," Energy, Elsevier, vol. 261(PA).
    8. Zhai, Xiaowei & Ge, Hui & Wang, Tingyan & Shu, Chi-Min & Li, Jun, 2020. "Effect of water immersion on active functional groups and characteristic temperatures of bituminous coal," Energy, Elsevier, vol. 205(C).
    9. Duo, Zhang & Xuexue, Liu & Hu, Wen & Shoushi, Zhang & Hongquan, Wang & Yi, Sun & Hao, Feng, 2024. "Effect of nucleating agents on fire prevention of dry ice from compound inert gas," Energy, Elsevier, vol. 286(C).
    10. Wang, Kai & Hu, Lihong & Deng, Jun & Zhang, Yanni & Zhang, Jiaxin, 2023. "Inhibiting effect and mechanism of polyethylene glycol - Citric acid on coal spontaneous combustion," Energy, Elsevier, vol. 275(C).
    11. Zhang, Xun & Lu, Bing & Qiao, Ling & Ding, Cong, 2023. "Study on the kinetics of chemical structure reaction in coal catalyzed by OH free radicals," Energy, Elsevier, vol. 285(C).
    12. Yang, Xinlei & Chu, Tingxiang & Yu, Minggao & Wang, Liang & Li, Haitao & Wen, Wushuang & Wu, Mingqiu & Wang, Fengchuan & Wang, Jiachen, 2024. "Effect of mechanical energy input during mechanical crushing on the macrokinetics of the coal–oxygen reaction: A laboratory–scale study," Energy, Elsevier, vol. 290(C).
    13. Li, Jinhu & Lu, Wei & Li, Jinliang & Yang, Yongliang & Li, Zenghua, 2023. "Mutual conversion of active sites and oxygen-containing functional groups during low-temperature oxidation of coal," Energy, Elsevier, vol. 272(C).
    14. Wang, Kai & Hu, Lihong & Deng, Jun & Zhang, Yanni, 2023. "Multiscale thermal behavioral characterization of spontaneous combustion of pre-oxidized coal with different air exposure time," Energy, Elsevier, vol. 262(PA).
    15. Deng, Jun & Yang, Nannan & Wang, Caiping & Yin, Deng & Xiaoyong, Zhao & He, Yongjun, 2023. "Study on staged heat transfer law of coal spontaneous combustion in deep mines," Energy, Elsevier, vol. 285(C).
    16. Gao, Mingqiang & Cheng, Cheng & Miao, Zhenyong & Wan, Keji & He, Qiongqiong, 2023. "Physicochemical properties, combustion kinetics and thermodynamics of oxidized lignite," Energy, Elsevier, vol. 268(C).
    17. Miao, Guodong & Li, Zenghua & Yang, Jingjing & Yang, Yongliang & Liu, Hao, 2023. "Microstructure evolution and higher-molecular-weight gas emission during the low temperature oxidation of coal," Energy, Elsevier, vol. 282(C).
    18. Guo, Shengli & Yang, Wenwang & Yuan, Shujie & Zhuo Yan, & Geng, Weile, 2022. "Experimental investigation of erosion effect on microstructure and oxidation characteristics of long-flame coal," Energy, Elsevier, vol. 259(C).
    19. Liu, Yin & Wen, Hu & Guo, Jun & Jin, Yongfei & Fan, Shixing & Cai, Guobin & Liu, Renfei, 2023. "Correlation between oxygen concentration and reaction rate of low-temperature coal oxidation: A case study of long-flame coal," Energy, Elsevier, vol. 275(C).
    20. Liu, Hao & Li, Zenghua & Yang, Yongliang & Miao, Guodong, 2023. "Study on the thermal behavior of coal during the spontaneous combustion latency," Energy, Elsevier, vol. 281(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:283:y:2023:i:c:s036054422302426x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.