IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2022i1p388-d1015708.html
   My bibliography  Save this article

Exergy Transfer Analysis of Biomass and Microwave Based on Experimental Heating Process

Author

Listed:
  • Longfei Cui

    (School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China)

  • Chaoyue Liu

    (School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China)

  • Hui Liu

    (School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China)

  • Wenke Zhao

    (School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China)

  • Yaning Zhang

    (School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China)

Abstract

Exergy transfer and microwave heating performances of wheat straw particles as affected by microwave power (250, 300, and 350 W), feeding load (10, 30, and 50 g), and particle size (0.058, 0.106, and 0.270 mm) were investigated and detailed in this study. The results show that when the microwave power increased from 250 to 350 W, the average heating rate increased in the range of 23.41–56.18 °C/min with the exergy transfer efficiency increased in the range of 1.10–1.89%. When the particle size increased from 0.058 to 0.270 mm, the average heating rate decreased in the range of 20.59–56.18 °C/min with the exergy transfer efficiency decreased in the range of 0.70–1.89%. When the feeding load increased from 10 to 50 g, the average heating rate increased first and then decreased in the range of 5.96–56.18 °C/min with the exergy transfer efficiency increased first and then decreased in the range of 0.07–1.89%. The highest exergy transfer efficiency was obtained at a microwave power of 300 W, feeding load of 30 g, and particle size of 0.058 mm.

Suggested Citation

  • Longfei Cui & Chaoyue Liu & Hui Liu & Wenke Zhao & Yaning Zhang, 2022. "Exergy Transfer Analysis of Biomass and Microwave Based on Experimental Heating Process," Sustainability, MDPI, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:gam:jsusta:v:15:y:2022:i:1:p:388-:d:1015708
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/1/388/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/1/388/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Samar Elkhalifa & Hamish R. Mackey & Tareq Al-Ansari & Gordon McKay, 2022. "Pyrolysis of Biosolids to Produce Biochars: A Review," Sustainability, MDPI, vol. 14(15), pages 1-19, August.
    2. Kalu Samuel Ukanwa & Kumar Patchigolla & Ruben Sakrabani & Edward Anthony & Sachin Mandavgane, 2019. "A Review of Chemicals to Produce Activated Carbon from Agricultural Waste Biomass," Sustainability, MDPI, vol. 11(22), pages 1-35, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ioannis Zafeiriou & Konstantina Karadendrou & Dafni Ioannou & Maria-Anna Karadendrou & Anastasia Detsi & Dimitrios Kalderis & Ioannis Massas & Dionisios Gasparatos, 2023. "Effects of Biochars Derived from Sewage Sludge and Olive Tree Prunings on Cu Fractionation and Mobility in Vineyard Soils over Time," Land, MDPI, vol. 12(2), pages 1-13, February.
    2. Irina Kandić & Milan Kragović & Jugoslav B. Krstić & Jelena Gulicovski & Jasmina Popović & Milena Rosić & Vesna Karadžić & Marija Stojmenović, 2022. "Natural Cyanobacteria Removers Obtained from Bio-Waste Date-Palm Leaf Stalks and Black Alder Cone-Like Flowers," IJERPH, MDPI, vol. 19(11), pages 1-29, May.
    3. Abbas, Yasir & Yun, Sining & Wang, Ziqi & Zhang, Yongwei & Zhang, Xianmei & Wang, Kaijun, 2021. "Recent advances in bio-based carbon materials for anaerobic digestion: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    4. Csaba Fogarassy & Laszlo Toth & Marton Czikkely & David Christian Finger, 2019. "Improving the Efficiency of Pyrolysis and Increasing the Quality of Gas Production through Optimization of Prototype Systems," Resources, MDPI, vol. 8(4), pages 1-14, December.
    5. Abdullah, Rose Fadzilah & Rashid, Umer & Ibrahim, Mohd Lokman & Hazmi, Balkis & Alharthi, Fahad A. & Nehdi, Imededdine Arbi, 2021. "Bifunctional nano-catalyst produced from palm kernel shell via hydrothermal-assisted carbonization for biodiesel production from waste cooking oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    6. Syafiqa Ayob & Wahid Ali Hamood Altowayti & Norzila Othman & Faisal Sheikh Khalid & Shafinaz Shahir & Husnul Azan Tajarudin & Ammar Mohammed Ali Alqadasi, 2023. "Experimental and Modeling Study on the Removal of Mn, Fe, and Zn from Fiberboard Industrial Wastewater Using Modified Activated Carbon," Sustainability, MDPI, vol. 15(8), pages 1-23, April.
    7. Hridoy Roy & Samiha Raisa Alam & Rayhan Bin-Masud & Tonima Rahman Prantika & Md. Nahid Pervez & Md. Shahinoor Islam & Vincenzo Naddeo, 2022. "A Review on Characteristics, Techniques, and Waste-to-Energy Aspects of Municipal Solid Waste Management: Bangladesh Perspective," Sustainability, MDPI, vol. 14(16), pages 1-25, August.
    8. Katarzyna Wystalska & Anna Kwarciak-Kozłowska & Renata Włodarczyk, 2022. "Influence of Technical Parameters of the Pyrolysis Process on the Surface Area, Porosity, and Hydrophobicity of Biochar from Sunflower Husk Pellet," Sustainability, MDPI, vol. 15(1), pages 1-13, December.
    9. Minh Trung Dao & T. T. Tram Nguyen & X. Du Nguyen & D. Duong La & D. Duc Nguyen & S. W. Chang & W. J. Chung & Van Khanh Nguyen, 2020. "Toxic Metal Adsorption from Aqueous Solution by Activated Biochars Produced from Macadamia Nutshell Waste," Sustainability, MDPI, vol. 12(19), pages 1-11, September.
    10. R. Maniarasu & Sushil Kumar Rathore & S. Murugan, 2023. "Biomass-based activated carbon for CO2 adsorption–A review," Energy & Environment, , vol. 34(5), pages 1674-1721, August.
    11. Mehdi Esmaeili Bidhendi & Zahra Poursorkh & Hassan Sereshti & Hamid Rashidi Nodeh & Shahabaldin Rezania & Muhammad Afzal Kamboh, 2020. "Nano-Size Biomass Derived from Pomegranate Peel for Enhanced Removal of Cefixime Antibiotic from Aqueous Media: Kinetic, Equilibrium and Thermodynamic Study," IJERPH, MDPI, vol. 17(12), pages 1-15, June.
    12. Marcelina Sołtysik & Izabela Majchrzak-Kucęba & Dariusz Wawrzyńczak, 2022. "Bio-Waste as a Substitute for the Production of Carbon Dioxide Adsorbents: A Review," Energies, MDPI, vol. 15(19), pages 1-23, September.
    13. Awal Noor & Sher Ali Khan, 2023. "Agricultural Wastes as Renewable Biomass to Remediate Water Pollution," Sustainability, MDPI, vol. 15(5), pages 1-19, February.
    14. Omar J. Quintero-García & Heilyn Pérez-Soler & Myriam A. Amezcua-Allieri, 2023. "Enzymatic Treatments for Biosolids: An Outlook and Recent Trends," IJERPH, MDPI, vol. 20(6), pages 1-18, March.
    15. Cristina Moliner & Simona Focacci & Beatrice Antonucci & Aldo Moreno & Simba Biti & Fazlena Hamzah & Alfonso Martinez-Felipe & Elisabetta Arato & Claudia Fernández Martín, 2022. "Production, Activation and CO 2 Uptake Capacity of a Carbonaceous Microporous Material from Palm Oil Residues," Energies, MDPI, vol. 15(23), pages 1-12, December.
    16. Sekhon, Satpal Singh & Kaur, Prabhsharan & Park, Jin-Soo, 2021. "From coconut shell biomass to oxygen reduction reaction catalyst: Tuning porosity and nitrogen doping," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2022:i:1:p:388-:d:1015708. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.