IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i9p5479-d807700.html
   My bibliography  Save this article

Empty Pallet Allocation Optimization in Shipbuilding Using a Pallet Pool System

Author

Listed:
  • Hao Yu

    (School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan 430063, China)

  • Jiaqi Yang

    (School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan 430063, China)

  • Xipei Kang

    (School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan 430063, China)

  • Zhe Cong

    (School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan 430063, China)

  • Siwei Yao

    (School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan 430063, China)

Abstract

Pallets are an important transportation tool in modern shipbuilding. With shipbuilding now trending towards larger ships, empty pallet allocation needs to meet the demands of having low costs and being sustainable for green shipbuilding. Thus, with the development of a pallet pool system, a new shipbuilding empty pallet pool allocation (SEPPA) pattern is proposed in this study. An integrated framework is developed that combines a mathematical planning model for a SEPPA pattern with a green allocation strategy. For the base case, the operation costs of the traditional shipbuilding empty pallet allocation (TSEPA) pattern and the SEPPA pattern are solved by applying an improved genetic algorithm for different pallet supply and demand situations. The results show that the SEPPA pattern is more cost-efficient than the TSEPA pattern. With increasing imbalances between supply and demand, the operation costs of the SEPPA pattern are lower than that of the TSEPA pattern. In general, the distribution of supply and demand will affect operation costs. Reasonable safety inventory intervals can reduce the operation costs of empty pallet allocation. This research may support decision making by shipbuilding pallet managers as they seek to minimize the costs of their pallet operations, by adopting practices and adapting strategies for their specific conditions.

Suggested Citation

  • Hao Yu & Jiaqi Yang & Xipei Kang & Zhe Cong & Siwei Yao, 2022. "Empty Pallet Allocation Optimization in Shipbuilding Using a Pallet Pool System," Sustainability, MDPI, vol. 14(9), pages 1-21, May.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:5479-:d:807700
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/9/5479/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/9/5479/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wenzhu Liao & Tong Wang, 2019. "A Novel Collaborative Optimization Model for Job Shop Production–Delivery Considering Time Window and Carbon Emission," Sustainability, MDPI, vol. 11(10), pages 1-27, May.
    2. Fabiana Tornese & Maria Grazia Gnoni & Brian K. Thorn & Andres L. Carrano & Jennifer A. Pazour, 2021. "Management and Logistics of Returnable Transport Items: A Review Analysis on the Pallet Supply Chain," Sustainability, MDPI, vol. 13(22), pages 1-23, November.
    3. Jianwei Ren & Chunhua Chen & Jian Gao & Chenxi Feng, 2020. "An optimization model for fleet sizing and empty pallet allocation considering CO2 emissions," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-16, February.
    4. Gang Chen & Xiaoyuan Wu & Jinghua Li & Hui Guo, 2020. "Green Vehicle Routing and Scheduling Optimization of Ship Steel Distribution Center Based on Improved Intelligent Water Drop Algorithms," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-13, January.
    5. Roy, Debjit & Carrano, Andres L. & Pazour, Jennifer A. & Gupta, Akash, 2016. "Cost-effective pallet management strategies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 358-371.
    6. Riccardo Accorsi & Giulia Baruffaldi & Riccardo Manzini & Chiara Pini, 2019. "Environmental Impacts of Reusable Transport Items: A Case Study of Pallet Pooling in a Retailer Supply Chain," Sustainability, MDPI, vol. 11(11), pages 1-13, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fabiana Tornese & Maria Grazia Gnoni & Brian K. Thorn & Andres L. Carrano & Jennifer A. Pazour, 2021. "Management and Logistics of Returnable Transport Items: A Review Analysis on the Pallet Supply Chain," Sustainability, MDPI, vol. 13(22), pages 1-23, November.
    2. Lehner, Roland, 2023. "Cross-Supply Chain Collaboration Platform for Pallet Management," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 138753, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    3. Najoua Lakhmi & Evren Sahin & Yves Dallery, 2022. "Modelling the Returnable Transport Items (RTI) Short-Term Planning Problem," Sustainability, MDPI, vol. 14(24), pages 1-23, December.
    4. Jianwei Ren & Chunhua Chen & Jian Gao & Chenxi Feng, 2020. "An optimization model for fleet sizing and empty pallet allocation considering CO2 emissions," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-16, February.
    5. Liu, Guoquan & Li, Lei & Chen, Jianghang & Ma, Fei, 2020. "Inventory sharing strategy and optimization for reusable transport items," International Journal of Production Economics, Elsevier, vol. 228(C).
    6. Ivan Deviatkin & Musharof Khan & Elizabeth Ernst & Mika Horttanainen, 2019. "Wooden and Plastic Pallets: A Review of Life Cycle Assessment (LCA) Studies," Sustainability, MDPI, vol. 11(20), pages 1-17, October.
    7. Magdalena Mucowska, 2021. "Trends of Environmentally Sustainable Solutions of Urban Last-Mile Deliveries on the E-Commerce Market—A Literature Review," Sustainability, MDPI, vol. 13(11), pages 1-26, May.
    8. Jan Pešta & Markéta Šerešová & Vladimír Kočí, 2020. "Carbon Footprint Assessment of Construction Waste Packaging Using the Package-to-Product Indicator," Sustainability, MDPI, vol. 12(23), pages 1-23, December.
    9. Chong Wu & Jiahua Gan & Zhuo Jiang & Anding Jiang & Wenlong Zheng, 2022. "Ecological Efficiency Evaluation, Spatial Difference, and Trend Analysis of Logistics Industry and Manufacturing Industry Linkage in the Northeast Old Industrial Base," Sustainability, MDPI, vol. 14(19), pages 1-20, October.
    10. Chauhan, Chetna & Kaur, Puneet & Arrawatia, Rakesh & Ractham, Peter & Dhir, Amandeep, 2022. "Supply chain collaboration and sustainable development goals (SDGs). Teamwork makes achieving SDGs dream work," Journal of Business Research, Elsevier, vol. 147(C), pages 290-307.
    11. Fatima Ezzahra Achamrah & Fouad Riane & Evren Sahin & Sabine Limbourg, 2022. "An Artificial-Immune-System-Based Algorithm Enhanced with Deep Reinforcement Learning for Solving Returnable Transport Item Problems," Sustainability, MDPI, vol. 14(10), pages 1-29, May.
    12. Hugo Barros & Teresa Pereira & António G. Ramos & Fernanda A. Ferreira, 2021. "Complexity Constraint in the Distributor’s Pallet Loading Problem," Mathematics, MDPI, vol. 9(15), pages 1-20, July.
    13. Dowan Kim & Joungdae Kim & Chaegun Phae, 2023. "Analysis of Lifespan of Plastic Pallets and Containers in Korea Using Probability Density Function (PDF)," Sustainability, MDPI, vol. 15(11), pages 1-11, May.
    14. Adil Baykasoğlu & Nurhan Dudaklı & Kemal Subulan & A. Serdar Taşan, 2022. "An integrated fleet planning model with empty vehicle repositioning for an intermodal transportation system," Operational Research, Springer, vol. 22(3), pages 2063-2098, July.
    15. Jianwei Ren & Qingqing Zhao & Bo Liu & Chunhua Chen, 2019. "Selection of pallet management strategies from the perspective of supply chain cost with Anylogic software," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-18, June.
    16. Radosław Łukasik & Tomasz Neumann, 2022. "Economic and Environmental Aspects of Engine Selection in Cargo Transportation," Energies, MDPI, vol. 15(7), pages 1-18, April.
    17. João M. R. C. Fernandes & Seyed Mahdi Homayouni & Dalila B. M. M. Fontes, 2022. "Energy-Efficient Scheduling in Job Shop Manufacturing Systems: A Literature Review," Sustainability, MDPI, vol. 14(10), pages 1-34, May.
    18. Shih-Hsin Chen & Yeong-Cheng Liou & Yi-Hui Chen & Kun-Ching Wang, 2019. "Order Acceptance and Scheduling Problem with Carbon Emission Reduction and Electricity Tariffs on a Single Machine," Sustainability, MDPI, vol. 11(19), pages 1-16, September.
    19. Yanqi Zhang & Xiaofei Kou & Haibin Liu & Shiqing Zhang & Liangliang Qie, 2022. "IoT-Enabled Sustainable and Cost-Efficient Returnable Transport Management Strategies in Multimodal Transport Systems," Sustainability, MDPI, vol. 14(18), pages 1-22, September.
    20. Dorota Kuchta & Ewa Marchwicka & Jan Schneider, 2021. "Sustainability-Oriented Project Scheduling Based on Z-Fuzzy Numbers for Public Institutions," Sustainability, MDPI, vol. 13(5), pages 1-17, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:5479-:d:807700. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.