IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i9p5329-d804535.html
   My bibliography  Save this article

Optimization and Machine Learning Applied to Last-Mile Logistics: A Review

Author

Listed:
  • Nadia Giuffrida

    (School of Architecture, Planning and Environmental Policy, University College Dublin, Richview Campus, Belfield, D04 V1W8 Dublin, Ireland)

  • Jenny Fajardo-Calderin

    (DeustoTech, Faculty of Engineering, University of Deusto, Av. Universidades 24, 48007 Bilbao, Spain)

  • Antonio D. Masegosa

    (DeustoTech, Faculty of Engineering, University of Deusto, Av. Universidades 24, 48007 Bilbao, Spain)

  • Frank Werner

    (Software AG, Altenkesseler Straße 17, 66115 Saarbrücken, Germany)

  • Margarete Steudter

    (Software AG, Altenkesseler Straße 17, 66115 Saarbrücken, Germany)

  • Francesco Pilla

    (School of Architecture, Planning and Environmental Policy, University College Dublin, Richview Campus, Belfield, D04 V1W8 Dublin, Ireland)

Abstract

The growth in e-commerce that our society has faced in recent years is changing the view companies have on last-mile logistics, due to its increasing impact on the whole supply chain. New technologies are raising users’ expectations with the need to develop customized delivery experiences; moreover, increasing pressure on supply chains has also created additional challenges for suppliers. At the same time, this phenomenon generates an increase in the impact on the liveability of our cities, due to traffic congestion, the occupation of public spaces, and the environmental and acoustic pollution linked to urban logistics. In this context, the optimization of last-mile deliveries is an imperative not only for companies with parcels that need to be delivered in the urban areas, but also for public administrations that want to guarantee a good quality of life for citizens. In recent years, many scholars have focused on the study of logistics optimization techniques and, in particular, the last mile. In addition to traditional optimization techniques, linked to the disciplines of operations research, the recent advances in the use of sensors and IoT, and the consequent large amount of data that derives from it, are pushing towards a greater use of big data and analytics techniques—such as machine learning and artificial intelligence—which are also in this sector. Based on this premise, the aim of this work is to provide an overview of the most recent literature advances related to last-mile delivery optimization techniques; this is to be used as a baseline for scholars who intend to explore new approaches and techniques in the study of last-mile logistics optimization. A bibliometric analysis and a critical review were conducted in order to highlight the main studied problems, the algorithms used, and the case studies. The results from the analysis allow the studies to be clustered into traditional optimization models, machine learning approaches, and mixed methods. The main research gaps and limitations of the current literature are assessed in order to identify unaddressed challenges and provide research suggestions for future approaches.

Suggested Citation

  • Nadia Giuffrida & Jenny Fajardo-Calderin & Antonio D. Masegosa & Frank Werner & Margarete Steudter & Francesco Pilla, 2022. "Optimization and Machine Learning Applied to Last-Mile Logistics: A Review," Sustainability, MDPI, vol. 14(9), pages 1-16, April.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:5329-:d:804535
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/9/5329/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/9/5329/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Grangier, Philippe & Gendreau, Michel & Lehuédé, Fabien & Rousseau, Louis-Martin, 2016. "An adaptive large neighborhood search for the two-echelon multiple-trip vehicle routing problem with satellite synchronization," European Journal of Operational Research, Elsevier, vol. 254(1), pages 80-91.
    2. Pillac, Victor & Gendreau, Michel & Guéret, Christelle & Medaglia, Andrés L., 2013. "A review of dynamic vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 225(1), pages 1-11.
    3. Lahyani, Rahma & Khemakhem, Mahdi & Semet, Frédéric, 2015. "Rich vehicle routing problems: From a taxonomy to a definition," European Journal of Operational Research, Elsevier, vol. 241(1), pages 1-14.
    4. Jorge Oyola & Halvard Arntzen & David L. Woodruff, 2017. "The stochastic vehicle routing problem, a literature review, Part II: solution methods," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(4), pages 349-388, December.
    5. Mingjing Zhao & Shouwen Ji & Zhenlin Wei, 2020. "Risk prediction and risk factor analysis of urban logistics to public security based on PSO-GRNN algorithm," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-21, October.
    6. Zonggui Tian & Ray Y. Zhong & Ali Vatankhah Barenji & Y. T. Wang & Zhi Li & Yiming Rong, 2021. "A blockchain-based evaluation approach for customer delivery satisfaction in sustainable urban logistics," International Journal of Production Research, Taylor & Francis Journals, vol. 59(7), pages 2229-2249, April.
    7. Hess, Alexander & Spinler, Stefan & Winkenbach, Matthias, 2021. "Real-time demand forecasting for an urban delivery platform," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    8. Diego Cattaruzza & Nabil Absi & Dominique Feillet, 2016. "The Multi-Trip Vehicle Routing Problem with Time Windows and Release Dates," Transportation Science, INFORMS, vol. 50(2), pages 676-693, May.
    9. A. Mor & M. G. Speranza, 2020. "Vehicle routing problems over time: a survey," 4OR, Springer, vol. 18(2), pages 129-149, June.
    10. Luciano Costa & Claudio Contardo & Guy Desaulniers, 2019. "Exact Branch-Price-and-Cut Algorithms for Vehicle Routing," Transportation Science, INFORMS, vol. 53(4), pages 946-985, July.
    11. Edoardo Marcucci & Valerio Gatta & Michela Le Pira & Lisa Hansson & Svein Bråthen, 2020. "Digital Twins: A Critical Discussion on Their Potential for Supporting Policy-Making and Planning in Urban Logistics," Sustainability, MDPI, vol. 12(24), pages 1-15, December.
    12. Aderemi Oluyinka Adewumi & Olawale Joshua Adeleke, 2018. "A survey of recent advances in vehicle routing problems," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(1), pages 155-172, February.
    13. Jorge Oyola & Halvard Arntzen & David L. Woodruff, 2018. "The stochastic vehicle routing problem, a literature review, part I: models," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 7(3), pages 193-221, September.
    14. Ido Orenstein & Tal Raviv & Elad Sadan, 2019. "Flexible parcel delivery to automated parcel lockers: models, solution methods and analysis," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(5), pages 683-711, December.
    15. Cattaruzza, Diego & Absi, Nabil & Feillet, Dominique & Vidal, Thibaut, 2014. "A memetic algorithm for the Multi Trip Vehicle Routing Problem," European Journal of Operational Research, Elsevier, vol. 236(3), pages 833-848.
    16. Alcaraz, Juan J. & Caballero-Arnaldos, Luis & Vales-Alonso, Javier, 2019. "Rich vehicle routing problem with last-mile outsourcing decisions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 129(C), pages 263-286.
    17. Juho Andelmin & Enrico Bartolini, 2017. "An Exact Algorithm for the Green Vehicle Routing Problem," Transportation Science, INFORMS, vol. 51(4), pages 1288-1303, November.
    18. Baldacci, Roberto & Mingozzi, Aristide & Roberti, Roberto, 2012. "Recent exact algorithms for solving the vehicle routing problem under capacity and time window constraints," European Journal of Operational Research, Elsevier, vol. 218(1), pages 1-6.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. P. V. Thayyib & Rajesh Mamilla & Mohsin Khan & Humaira Fatima & Mohd Asim & Imran Anwar & M. K. Shamsudheen & Mohd Asif Khan, 2023. "State-of-the-Art of Artificial Intelligence and Big Data Analytics Reviews in Five Different Domains: A Bibliometric Summary," Sustainability, MDPI, vol. 15(5), pages 1-38, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexandre M. Florio & Nabil Absi & Dominique Feillet, 2021. "Routing Electric Vehicles on Congested Street Networks," Transportation Science, INFORMS, vol. 55(1), pages 238-256, 1-2.
    2. Zhang, Lele & Ding, Pengyuan & Thompson, Russell G., 2023. "A stochastic formulation of the two-echelon vehicle routing and loading bay reservation problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
    3. Luciano Costa & Claudio Contardo & Guy Desaulniers, 2019. "Exact Branch-Price-and-Cut Algorithms for Vehicle Routing," Transportation Science, INFORMS, vol. 53(4), pages 946-985, July.
    4. Florio, Alexandre M. & Gendreau, Michel & Hartl, Richard F. & Minner, Stefan & Vidal, Thibaut, 2023. "Recent advances in vehicle routing with stochastic demands: Bayesian learning for correlated demands and elementary branch-price-and-cut," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1081-1093.
    5. Bettinelli, Andrea & Cacchiani, Valentina & Crainic, Teodor Gabriel & Vigo, Daniele, 2019. "A Branch-and-Cut-and-Price algorithm for the Multi-trip Separate Pickup and Delivery Problem with Time Windows at Customers and Facilities," European Journal of Operational Research, Elsevier, vol. 279(3), pages 824-839.
    6. He, Dongdong & Ceder, Avishai (Avi) & Zhang, Wenyi & Guan, Wei & Qi, Geqi, 2023. "Optimization of a rural bus service integrated with e-commerce deliveries guided by a new sustainable policy in China," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 172(C).
    7. Martin Wölck & Stephan Meisel, 2022. "Branch-and-Price Approaches for Real-Time Vehicle Routing with Picking, Loading, and Soft Time Windows," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 2192-2211, July.
    8. Campelo, Pedro & Neves-Moreira, Fábio & Amorim, Pedro & Almada-Lobo, Bernardo, 2019. "Consistent vehicle routing problem with service level agreements: A case study in the pharmaceutical distribution sector," European Journal of Operational Research, Elsevier, vol. 273(1), pages 131-145.
    9. Nikolaus Furian & Michael O’Sullivan & Cameron Walker & Eranda Çela, 2021. "A machine learning-based branch and price algorithm for a sampled vehicle routing problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(3), pages 693-732, September.
    10. Côté, Jean-François & Alves de Queiroz, Thiago & Gallesi, Francesco & Iori, Manuel, 2023. "A branch-and-regret algorithm for the same-day delivery problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
    11. Zhaoxia Guo & Stein W. Wallace & Michal Kaut, 2019. "Vehicle Routing with Space- and Time-Correlated Stochastic Travel Times: Evaluating the Objective Function," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 654-670, October.
    12. A. Mor & M. G. Speranza, 2022. "Vehicle routing problems over time: a survey," Annals of Operations Research, Springer, vol. 314(1), pages 255-275, July.
    13. Grigorios D. Konstantakopoulos & Sotiris P. Gayialis & Evripidis P. Kechagias, 2022. "Vehicle routing problem and related algorithms for logistics distribution: a literature review and classification," Operational Research, Springer, vol. 22(3), pages 2033-2062, July.
    14. Christian Brandstätter, 2021. "A metaheuristic algorithm and structured analysis for the Line-haul Feeder Vehicle Routing Problem with Time Windows," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(1), pages 247-289, March.
    15. Banerjee, Dipayan & Erera, Alan L. & Stroh, Alexander M. & Toriello, Alejandro, 2023. "Who has access to e-commerce and when? Time-varying service regions in same-day delivery," Transportation Research Part B: Methodological, Elsevier, vol. 170(C), pages 148-168.
    16. Vidal, Thibaut & Laporte, Gilbert & Matl, Piotr, 2020. "A concise guide to existing and emerging vehicle routing problem variants," European Journal of Operational Research, Elsevier, vol. 286(2), pages 401-416.
    17. Coindreau, Marc-Antoine & Gallay, Olivier & Zufferey, Nicolas, 2019. "Vehicle routing with transportable resources: Using carpooling and walking for on-site services," European Journal of Operational Research, Elsevier, vol. 279(3), pages 996-1010.
    18. Yiming Liu & Yang Yu & Yu Zhang & Roberto Baldacci & Jiafu Tang & Xinggang Luo & Wei Sun, 2023. "Branch-Cut-and-Price for the Time-Dependent Green Vehicle Routing Problem with Time Windows," INFORMS Journal on Computing, INFORMS, vol. 35(1), pages 14-30, January.
    19. Nicolas Rincon-Garcia & Ben J. Waterson & Tom J. Cherrett, 2018. "Requirements from vehicle routing software: perspectives from literature, developers and the freight industry," Transport Reviews, Taylor & Francis Journals, vol. 38(1), pages 117-138, January.
    20. Yves Crama & Michel Grabisch & Silvano Martello, 2022. "Preface," Annals of Operations Research, Springer, vol. 314(1), pages 1-3, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:5329-:d:804535. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.