IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v170y2023icp148-168.html
   My bibliography  Save this article

Who has access to e-commerce and when? Time-varying service regions in same-day delivery

Author

Listed:
  • Banerjee, Dipayan
  • Erera, Alan L.
  • Stroh, Alexander M.
  • Toriello, Alejandro

Abstract

We study the design of same-day delivery (SDD) systems under the assumption that service regions are allowed to vary over the course of the day; equivalently, that customers in different locations may have access to SDD for different lengths of time over the service day or may have no access at all. This contrasts with the bulk of the literature, in which a service region is defined in advance and all customers in the service region can place SDD orders during the same time window. Leveraging continuous approximation techniques to capture average-case system behavior, we derive optimal service region areas and corresponding SDD order cutoff times to maximize the expected number of orders served per day. We quantify the benefit of allowing the service regions to vary, both theoretically and empirically, and discuss related equity issues in SDD systems. We illustrate and validate our results with a case study set in the Phoenix, Arizona metropolitan area.

Suggested Citation

  • Banerjee, Dipayan & Erera, Alan L. & Stroh, Alexander M. & Toriello, Alejandro, 2023. "Who has access to e-commerce and when? Time-varying service regions in same-day delivery," Transportation Research Part B: Methodological, Elsevier, vol. 170(C), pages 148-168.
  • Handle: RePEc:eee:transb:v:170:y:2023:i:c:p:148-168
    DOI: 10.1016/j.trb.2023.02.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261523000188
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2023.02.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pillac, Victor & Gendreau, Michel & Guéret, Christelle & Medaglia, Andrés L., 2013. "A review of dynamic vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 225(1), pages 1-11.
    2. Mathias A. Klapp & Alan L. Erera & Alejandro Toriello, 2018. "The One-Dimensional Dynamic Dispatch Waves Problem," Transportation Science, INFORMS, vol. 52(2), pages 402-415, March.
    3. Stacy A. Voccia & Ann Melissa Campbell & Barrett W. Thomas, 2019. "The Same-Day Delivery Problem for Online Purchases," Service Science, INFORMS, vol. 53(1), pages 167-184, February.
    4. Marlin W. Ulmer & Barrett W. Thomas & Dirk C. Mattfeld, 2019. "Preemptive depot returns for dynamic same-day delivery," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(4), pages 327-361, December.
    5. Ansari, Sina & Başdere, Mehmet & Li, Xiaopeng & Ouyang, Yanfeng & Smilowitz, Karen, 2018. "Advancements in continuous approximation models for logistics and transportation systems: 1996–2016," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 229-252.
    6. Iman Dayarian & Martin Savelsbergh & John-Paul Clarke, 2020. "Same-Day Delivery with Drone Resupply," Transportation Science, INFORMS, vol. 54(1), pages 229-249, January.
    7. Marsh, Michael T. & Schilling, David A., 1994. "Equity measurement in facility location analysis: A review and framework," European Journal of Operational Research, Elsevier, vol. 74(1), pages 1-17, April.
    8. Klapp, Mathias A. & Erera, Alan L. & Toriello, Alejandro, 2018. "The Dynamic Dispatch Waves Problem for same-day delivery," European Journal of Operational Research, Elsevier, vol. 271(2), pages 519-534.
    9. Borkowski, Przemysław & Jażdżewska-Gutta, Magdalena & Szmelter-Jarosz, Agnieszka, 2021. "Lockdowned: Everyday mobility changes in response to COVID-19," Journal of Transport Geography, Elsevier, vol. 90(C).
    10. Newell, G. F., 1986. "Design of multiple-vehicle delivery tours--III valuable goods," Transportation Research Part B: Methodological, Elsevier, vol. 20(5), pages 377-390, October.
    11. Jorge Oyola & Halvard Arntzen & David L. Woodruff, 2017. "The stochastic vehicle routing problem, a literature review, Part II: solution methods," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(4), pages 349-388, December.
    12. Marlin W. Ulmer & Barrett W. Thomas & Ann Melissa Campbell & Nicholas Woyak, 2021. "The Restaurant Meal Delivery Problem: Dynamic Pickup and Delivery with Deadlines and Random Ready Times," Transportation Science, INFORMS, vol. 55(1), pages 75-100, 1-2.
    13. Bergmann, Felix M. & Wagner, Stephan M. & Winkenbach, Matthias, 2020. "Integrating first-mile pickup and last-mile delivery on shared vehicle routes for efficient urban e-commerce distribution," Transportation Research Part B: Methodological, Elsevier, vol. 131(C), pages 26-62.
    14. Newell, Gordon F. & Daganzo, Carlos F., 1986. "Design of multiple-vehicle delivery tours--I a ring-radial network," Transportation Research Part B: Methodological, Elsevier, vol. 20(5), pages 345-363, October.
    15. Anna Franceschetti & Ola Jabali & Gilbert Laporte, 2017. "Rejoinder on: Continuous approximation models in freight distribution management," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(3), pages 443-444, October.
    16. Daganzo, Carlos F., 1984. "The length of tours in zones of different shapes," Transportation Research Part B: Methodological, Elsevier, vol. 18(2), pages 135-145, April.
    17. Nabila Azi & Michel Gendreau & Jean-Yves Potvin, 2012. "A dynamic vehicle routing problem with multiple delivery routes," Annals of Operations Research, Springer, vol. 199(1), pages 103-112, October.
    18. Newell, Gordon F. & Daganzo, Carlos F., 1986. "Design of multiple vehicle delivery tours--II other metrics," Transportation Research Part B: Methodological, Elsevier, vol. 20(5), pages 365-376, October.
    19. Anna Franceschetti & Ola Jabali & Gilbert Laporte, 2017. "Continuous approximation models in freight distribution management," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(3), pages 413-433, October.
    20. Marlin W. Ulmer & Alan Erera & Martin Savelsbergh, 2022. "Dynamic service area sizing in urban delivery," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(3), pages 763-793, September.
    21. Chen, Xinwei & Ulmer, Marlin W. & Thomas, Barrett W., 2022. "Deep Q-learning for same-day delivery with vehicles and drones," European Journal of Operational Research, Elsevier, vol. 298(3), pages 939-952.
    22. Klapp, Mathias A. & Erera, Alan L. & Toriello, Alejandro, 2020. "Request acceptance in same-day delivery," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).
    23. Jorge Oyola & Halvard Arntzen & David L. Woodruff, 2018. "The stochastic vehicle routing problem, a literature review, part I: models," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 7(3), pages 193-221, September.
    24. Carlos F. Daganzo, 1984. "The Distance Traveled to Visit N Points with a Maximum of C Stops per Vehicle: An Analytic Model and an Application," Transportation Science, INFORMS, vol. 18(4), pages 331-350, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Jian & Woensel, Tom Van, 2023. "Dynamic vehicle routing with random requests: A literature review," International Journal of Production Economics, Elsevier, vol. 256(C).
    2. Janjevic, Milena & Merchán, Daniel & Winkenbach, Matthias, 2021. "Designing multi-tier, multi-service-level, and multi-modal last-mile distribution networks for omni-channel operations," European Journal of Operational Research, Elsevier, vol. 294(3), pages 1059-1077.
    3. Chen, Xinwei & Wang, Tong & Thomas, Barrett W. & Ulmer, Marlin W., 2023. "Same-day delivery with fair customer service," European Journal of Operational Research, Elsevier, vol. 308(2), pages 738-751.
    4. Fleckenstein, David & Klein, Robert & Steinhardt, Claudius, 2023. "Recent advances in integrating demand management and vehicle routing: A methodological review," European Journal of Operational Research, Elsevier, vol. 306(2), pages 499-518.
    5. Côté, Jean-François & Alves de Queiroz, Thiago & Gallesi, Francesco & Iori, Manuel, 2023. "A branch-and-regret algorithm for the same-day delivery problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
    6. Merchán, Daniel & Winkenbach, Matthias & Snoeck, André, 2020. "Quantifying the impact of urban road networks on the efficiency of local trips," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 38-62.
    7. Zhang, Jian & Luo, Kelin & Florio, Alexandre M. & Van Woensel, Tom, 2023. "Solving large-scale dynamic vehicle routing problems with stochastic requests," European Journal of Operational Research, Elsevier, vol. 306(2), pages 596-614.
    8. Lei, Chao & Ouyang, Yanfeng, 2018. "Continuous approximation for demand balancing in solving large-scale one-commodity pickup and delivery problems," Transportation Research Part B: Methodological, Elsevier, vol. 109(C), pages 90-109.
    9. Chen, Xinwei & Ulmer, Marlin W. & Thomas, Barrett W., 2022. "Deep Q-learning for same-day delivery with vehicles and drones," European Journal of Operational Research, Elsevier, vol. 298(3), pages 939-952.
    10. Schaumann, Sarah K. & Bergmann, Felix M. & Wagner, Stephan M. & Winkenbach, Matthias, 2023. "Route efficiency implications of time windows and vehicle capacities in first- and last-mile logistics," European Journal of Operational Research, Elsevier, vol. 311(1), pages 88-111.
    11. Peter Dieter & Philipp Speckenmeyer & Guido Schryen, 2024. "The On-Demand Delivery Problem: Assignment of Orders to Warehouses and Couriers," Working Papers Dissertations 126, Paderborn University, Faculty of Business Administration and Economics.
    12. Marlin W. Ulmer & Alan Erera & Martin Savelsbergh, 2022. "Dynamic service area sizing in urban delivery," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(3), pages 763-793, September.
    13. Ouyang, Yanfeng, 2007. "Design of vehicle routing zones for large-scale distribution systems," Transportation Research Part B: Methodological, Elsevier, vol. 41(10), pages 1079-1093, December.
    14. Alexander M. Stroh & Alan L. Erera & Alejandro Toriello, 2022. "Tactical Design of Same-Day Delivery Systems," Management Science, INFORMS, vol. 68(5), pages 3444-3463, May.
    15. Ye, Anke & Zhang, Kenan & Chen, Xiqun (Michael) & Bell, Michael G.H. & Lee, Der-Horng & Hu, Simon, 2024. "Modeling and managing an on-demand meal delivery system with order bundling," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 187(C).
    16. Klein, Vienna & Steinhardt, Claudius, 2023. "Dynamic demand management and online tour planning for same-day delivery," European Journal of Operational Research, Elsevier, vol. 307(2), pages 860-886.
    17. Estrada, Miquel & Roca-Riu, Mireia, 2017. "Stakeholder’s profitability of carrier-led consolidation strategies in urban goods distribution," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 104(C), pages 165-188.
    18. Carlos Daganzo & Karen Smilowitz, 2006. "A note on asymptotic formulae for one-dimensional network flow problems," Annals of Operations Research, Springer, vol. 144(1), pages 153-160, April.
    19. Liu, Zeyu & Li, Xueping & Khojandi, Anahita, 2022. "The flying sidekick traveling salesman problem with stochastic travel time: A reinforcement learning approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    20. Carlos F. Daganzo & Karen R. Smilowitz, 2004. "Bounds and Approximations for the Transportation Problem of Linear Programming and Other Scalable Network Problems," Transportation Science, INFORMS, vol. 38(3), pages 343-356, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:170:y:2023:i:c:p:148-168. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.