IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i9p4992-d798839.html
   My bibliography  Save this article

An Improved Equilibrium Optimizer for Solving Optimal Power Flow Problem

Author

Listed:
  • Zhouxin Lan

    (College of Big Data & Information Engineering, Guizhou University, Guiyang 550025, China)

  • Qing He

    (College of Big Data & Information Engineering, Guizhou University, Guiyang 550025, China
    Guizhou Provincial Key Laboratory of Public Big Data, Guizhou University, Guiyang 550025, China)

  • Hongzan Jiao

    (Department of Urban Planning, School of Urban Design, Wuhan University, Wuhan 430072, China
    Engineering Research Center of Human Settlements and Environment of Hubei Province, Wuhan 430072, China)

  • Liu Yang

    (College of Architecture and Urban Planning, Guizhou University, Guiyang 550025, China)

Abstract

With the rapid development of the economy, the quality of power systems has assumed an increasingly prominent influence on people’s daily lives. In this paper, an improved equilibrium optimizer (IEO) is proposed to solve the optimal power flow (OPF) problem. The algorithm uses the chaotic equilibrium pool to enhance the information interaction between individuals. In addition, a nonlinear dynamic generation mechanism is introduced to balance the global search and local development capabilities. At the same time, the improved algorithm uses the golden sine strategy to update the individual position and enhance the ability of the algorithm to jump out of local optimums. Sixteen benchmark test functions, Wilcoxon rank sum test and 30 CEC2014 complex test function optimization results show that the improved algorithm has better global searching ability than the basic equilibrium optimizer, as well as faster convergence and a more accurate solution than other improved equilibrium optimizers and metaheuristic algorithms. Finally, the improved algorithm is applied to the standard IEEE 30-bus test systems for different objectives. The obtained results demonstrate that the improved algorithm has better solutions than other algorithms in the literature for solving the optimal power flow problem.

Suggested Citation

  • Zhouxin Lan & Qing He & Hongzan Jiao & Liu Yang, 2022. "An Improved Equilibrium Optimizer for Solving Optimal Power Flow Problem," Sustainability, MDPI, vol. 14(9), pages 1-27, April.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:4992-:d:798839
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/9/4992/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/9/4992/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohammad Zohrul Islam & Mohammad Lutfi Othman & Noor Izzri Abdul Wahab & Veerapandiyan Veerasamy & Saifur Rahman Opu & Abinaya Inbamani & Vishalakshi Annamalai, 2021. "Marine predators algorithm for solving single-objective optimal power flow," PLOS ONE, Public Library of Science, vol. 16(8), pages 1-27, August.
    2. Mohammad Zohrul Islam & Noor Izzri Abdul Wahab & Veerapandiyan Veerasamy & Hashim Hizam & Nashiren Farzilah Mailah & Josep M. Guerrero & Mohamad Nasrun Mohd Nasir, 2020. "A Harris Hawks Optimization Based Single- and Multi-Objective Optimal Power Flow Considering Environmental Emission," Sustainability, MDPI, vol. 12(13), pages 1-25, June.
    3. Sirote Khunkitti & Apirat Siritaratiwat & Suttichai Premrudeepreechacharn, 2021. "Multi-Objective Optimal Power Flow Problems Based on Slime Mould Algorithm," Sustainability, MDPI, vol. 13(13), pages 1-21, July.
    4. Abdullah Khan & Hashim Hizam & Noor Izzri Abdul-Wahab & Mohammad Lutfi Othman, 2020. "Solution of Optimal Power Flow Using Non-Dominated Sorting Multi Objective Based Hybrid Firefly and Particle Swarm Optimization Algorithm," Energies, MDPI, vol. 13(16), pages 1-24, August.
    5. Hatem Diab & Mahmoud Abdelsalam & Alaa Abdelbary, 2021. "A Multi-Objective Optimal Power Flow Control of Electrical Transmission Networks Using Intelligent Meta-Heuristic Optimization Techniques," Sustainability, MDPI, vol. 13(9), pages 1-25, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qing He & Zhouxin Lan & Damin Zhang & Liu Yang & Shihang Luo, 2022. "Improved Marine Predator Algorithm for Wireless Sensor Network Coverage Optimization Problem," Sustainability, MDPI, vol. 14(16), pages 1-19, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Murtadha Al-Kaabi & Virgil Dumbrava & Mircea Eremia, 2022. "A Slime Mould Algorithm Programming for Solving Single and Multi-Objective Optimal Power Flow Problems with Pareto Front Approach: A Case Study of the Iraqi Super Grid High Voltage," Energies, MDPI, vol. 15(20), pages 1-33, October.
    2. Sirote Khunkitti & Apirat Siritaratiwat & Suttichai Premrudeepreechacharn, 2021. "Multi-Objective Optimal Power Flow Problems Based on Slime Mould Algorithm," Sustainability, MDPI, vol. 13(13), pages 1-21, July.
    3. Balasubbareddy Mallala & Venkata Prasad Papana & Ravindra Sangu & Kowstubha Palle & Venkata Krishna Reddy Chinthalacheruvu, 2022. "Multi-Objective Optimal Power Flow Solution Using a Non-Dominated Sorting Hybrid Fruit Fly-Based Artificial Bee Colony," Energies, MDPI, vol. 15(11), pages 1-16, June.
    4. Shahenda Sarhan & Ragab El-Sehiemy & Amlak Abaza & Mona Gafar, 2022. "Turbulent Flow of Water-Based Optimization for Solving Multi-Objective Technical and Economic Aspects of Optimal Power Flow Problems," Mathematics, MDPI, vol. 10(12), pages 1-22, June.
    5. Muhammad Riaz & Aamir Hanif & Haris Masood & Muhammad Attique Khan & Kamran Afaq & Byeong-Gwon Kang & Yunyoung Nam, 2021. "An Optimal Power Flow Solution of a System Integrated with Renewable Sources Using a Hybrid Optimizer," Sustainability, MDPI, vol. 13(23), pages 1-12, December.
    6. Taha Selim Ustun, 2022. "Power Systems Imitate Nature for Improved Performance Use of Nature-Inspired Optimization Techniques," Energies, MDPI, vol. 15(17), pages 1-2, August.
    7. Slim Abid & Ali M. El-Rifaie & Mostafa Elshahed & Ahmed R. Ginidi & Abdullah M. Shaheen & Ghareeb Moustafa & Mohamed A. Tolba, 2023. "Development of Slime Mold Optimizer with Application for Tuning Cascaded PD-PI Controller to Enhance Frequency Stability in Power Systems," Mathematics, MDPI, vol. 11(8), pages 1-32, April.
    8. Ragab El-Sehiemy & Abdallah Elsayed & Abdullah Shaheen & Ehab Elattar & Ahmed Ginidi, 2021. "Scheduling of Generation Stations, OLTC Substation Transformers and VAR Sources for Sustainable Power System Operation Using SNS Optimizer," Sustainability, MDPI, vol. 13(21), pages 1-24, October.
    9. Suprava Chakraborty & Sumit Verma & Aprajita Salgotra & Rajvikram Madurai Elavarasan & Devaraj Elangovan & Lucian Mihet-Popa, 2021. "Solar-Based DG Allocation Using Harris Hawks Optimization While Considering Practical Aspects," Energies, MDPI, vol. 14(16), pages 1-26, August.
    10. Murtadha Al-Kaabi & Virgil Dumbrava & Mircea Eremia, 2022. "Single and Multi-Objective Optimal Power Flow Based on Hunger Games Search with Pareto Concept Optimization," Energies, MDPI, vol. 15(22), pages 1-31, November.
    11. Aml Sayed & Mohamed Ebeed & Ziad M. Ali & Adel Bedair Abdel-Rahman & Mahrous Ahmed & Shady H. E. Abdel Aleem & Adel El-Shahat & Mahmoud Rihan, 2021. "A Hybrid Optimization Algorithm for Solving of the Unit Commitment Problem Considering Uncertainty of the Load Demand," Energies, MDPI, vol. 14(23), pages 1-21, November.
    12. Lenin Kanagasabai, 2022. "Real power loss dwindling and voltage reliability enrichment by gradient based optimization algorithm," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(5), pages 2727-2742, October.
    13. Lenin Kanagasabai, 2023. "Real power loss reduction by extreme learning machine based Panthera leo, chaotic based Jungle search and Quantum based Chipmunk search optimization algorithms," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(1), pages 55-78, March.
    14. Mohamed Farhat & Salah Kamel & Ahmed M. Atallah & Mohamed H. Hassan & Ahmed M. Agwa, 2022. "ESMA-OPF: Enhanced Slime Mould Algorithm for Solving Optimal Power Flow Problem," Sustainability, MDPI, vol. 14(4), pages 1-33, February.
    15. Yongmao Xiao & Wei Yan & Ruping Wang & Zhigang Jiang & Ying Liu, 2021. "Research on Blank Optimization Design Based on Low-Carbon and Low-Cost Blank Process Route Optimization Model," Sustainability, MDPI, vol. 13(4), pages 1-21, February.
    16. Mohamed H. Hassan & Salah Kamel & Ali Selim & Tahir Khurshaid & José Luis Domínguez-García, 2021. "A Modified Rao-2 Algorithm for Optimal Power Flow Incorporating Renewable Energy Sources," Mathematics, MDPI, vol. 9(13), pages 1-22, June.
    17. José A. G. Cararo & João Caetano Neto & Wagner A. Vilela Júnior & Márcio R. C. Reis & Gabriel A. Wainer & Paulo V. dos Santos & Wesley P. Calixto, 2021. "Spatial Model of Optimization Applied in the Distributed Generation Photovoltaic to Adjust Voltage Levels," Energies, MDPI, vol. 14(22), pages 1-37, November.
    18. Sane Lei Lei Wynn & Watcharakorn Pinthurat & Boonruang Marungsri, 2022. "Multi-Objective Optimization for Peak Shaving with Demand Response under Renewable Generation Uncertainty," Energies, MDPI, vol. 15(23), pages 1-19, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:4992-:d:798839. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.