IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i7p3858-d779109.html
   My bibliography  Save this article

Amino Acids Reduce Mild Steel Corrosion in Used Cooking Oils

Author

Listed:
  • Nina Bruun

    (Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Henrikinkatu 2, FI-20500 Turku, Finland)

  • Juho Lehmusto

    (Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Henrikinkatu 2, FI-20500 Turku, Finland)

  • Fiseha Tesfaye

    (Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Henrikinkatu 2, FI-20500 Turku, Finland)

  • Jarl Hemming

    (Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Henrikinkatu 2, FI-20500 Turku, Finland)

  • Leena Hupa

    (Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Henrikinkatu 2, FI-20500 Turku, Finland)

Abstract

In this study, we tested several amino acids as eco-friendly inhibitors against corrosion of mild steel by used cooking oils (UCOs). The corrosion inhibition was studied by immersing mild steel rods in the UCOs and reference fresh rapeseed and olive oils mixed with amino acids. The immersion tests were conducted at room temperature for three days. The roles of water and bio-oil preservatives (formic and propionic acids) in the corrosion were explored. The mild steel surface morphology changes after exposure to the oils were analyzed with a scanning electron microscope coupled with an energy dispersive spectroscope (SEM-EDS). The concentration of iron dissolved in the oils was determined with a spectrophotometer. A thick layer was analyzed on the surfaces of the mild steel rods immersed in the oils containing formic or propionic acid and water. This layer provided a minor barrier against corrosion. According to the Fourier transform infrared spectrometer (FTIR) analytical results, the layer consisted of an acid and iron salt mixture. All the tested amino acids decreased the concentration of dissolved iron in the UCOs; particularly, cationic amino acids, L-lycine and L-arginine showed adequate corrosion inhibition properties at low concentrations.

Suggested Citation

  • Nina Bruun & Juho Lehmusto & Fiseha Tesfaye & Jarl Hemming & Leena Hupa, 2022. "Amino Acids Reduce Mild Steel Corrosion in Used Cooking Oils," Sustainability, MDPI, vol. 14(7), pages 1-14, March.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:7:p:3858-:d:779109
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/7/3858/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/7/3858/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Serqueira, Dalyelli S. & Pereira, Jian F.S. & Squissato, André L. & Rodrigues, Mônica A. & Lima, Renata C. & Faria, Anízio M. & Richter, Eduardo M. & Munoz, Rodrigo A.A., 2021. "Oxidative stability and corrosivity of biodiesel produced from residual cooking oil exposed to copper and carbon steel under simulated storage conditions: Dual effect of antioxidants," Renewable Energy, Elsevier, vol. 164(C), pages 1485-1495.
    2. Nina Bruun & Abayneh Getachew Demesa & Fiseha Tesfaye & Jarl Hemming & Leena Hupa, 2019. "Factors Affecting the Corrosive Behavior of Used Cooking Oils and a Non-Edible Fish Oil That Are in Contact with Ferrous Metals," Energies, MDPI, vol. 12(24), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenbo Ai & Haeng Muk Cho & Md. Iqbal Mahmud, 2024. "The Impact of Various Factors on Long-Term Storage of Biodiesel and Its Prevention: A Review," Energies, MDPI, vol. 17(14), pages 1-17, July.
    2. Katriina Sirviö & Jonna Kaivosoja & Carolin Nuortila & Huaying Wang-Alho & Seppo Niemi & Teemu Ovaska, 2023. "B20 Fuel Compatibility with Steels in Case of Fuel Contamination," Energies, MDPI, vol. 16(16), pages 1-9, August.
    3. Jemima Romola, C.V. & Karl J Samuel, P.K. & Megana Harshini, M. & Ganesh Moorthy, I. & Shyam Kumar, R. & Chinnathambi, Arunachalam & Salmen, Saleh H. & Alharbi, Sulaiman Ali & Karthikumar, Sankar, 2021. "Improvement of fuel properties of used palm oil derived biodiesel with butyl ferulate as an additive," Renewable Energy, Elsevier, vol. 175(C), pages 1052-1068.
    4. Suherman Suherman & Ilmi Abdullah & Muhammad Sabri & Arridina Susan Silitonga, 2023. "Evaluation of Physicochemical Properties Composite Biodiesel from Waste Cooking Oil and Schleichera oleosa Oil," Energies, MDPI, vol. 16(15), pages 1-20, August.
    5. Sergio Nogales-Delgado & Agustina Guiberteau Cabanillas & Juan Pedro Moro & José María Encinar Martín, 2023. "Use of Propyl Gallate in Cardoon Biodiesel to Keep Its Main Properties during Oxidation," Clean Technol., MDPI, vol. 5(2), pages 1-15, May.
    6. Nina Bruun & Fiseha Tesfaye & Jarl Hemming & Meheretu Jaleta Dirbeba & Leena Hupa, 2020. "Effect of Storage Time on the Physicochemical Properties of Waste Fish Oils and Used Cooking Vegetable Oils," Energies, MDPI, vol. 14(1), pages 1-14, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:7:p:3858-:d:779109. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.