IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i7p3808-d778041.html
   My bibliography  Save this article

Coupling of Urban Economic Development and Transportation System: An Urban Agglomeration Case

Author

Listed:
  • Yaqi Hu

    (Northeast Asian Studies College, Jilin University, Changchun 130012, China)

  • Yingzi Chen

    (Northeast Asian Studies College, Jilin University, Changchun 130012, China
    Northeast Asian Research Center, Jilin University, Changchun 130012, China)

Abstract

Urban agglomeration is a new carrier of regional economic development, whose spatial structure can be reflected by the transportation system. The coordination between urban economic development and the transportation system is conducive to promoting balanced urban economic development. As an important urban cluster of China, the Harbin-Changchun urban agglomeration plays an important role in promoting the revitalization of northeast China. Targeting 11 cities of the Harbin-Changchun urban agglomeration, this paper adopts the coupling coordination degree model to study the coordination level of urban economic development and the transportation system. The results show that large differences exist among the cities, with Changchun at the outstanding position. A more developed transportation system exists in the western Harbin-Changchun urban agglomeration, while the east is in a worse condition. The coupling coordination degree of the urban economic development and transportation system shows obvious stratification. Further adjusting the industrial structure, expanding the degree of opening to the outside world, and increasing investment in transportation technological innovation are recommended to promote an integrated development pattern in the Harbin-Changchun urban agglomeration.

Suggested Citation

  • Yaqi Hu & Yingzi Chen, 2022. "Coupling of Urban Economic Development and Transportation System: An Urban Agglomeration Case," Sustainability, MDPI, vol. 14(7), pages 1-17, March.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:7:p:3808-:d:778041
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/7/3808/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/7/3808/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fouquet, Roger, 2012. "Trends in income and price elasticities of transport demand (1850–2010)," Energy Policy, Elsevier, vol. 50(C), pages 62-71.
    2. Stefan Pauliuk & Anders Arvesen & Konstantin Stadler & Edgar G. Hertwich, 2017. "Industrial ecology in integrated assessment models," Nature Climate Change, Nature, vol. 7(1), pages 13-20, January.
    3. Lida Wang & Xian Rong & Lingling Mu & Lei Xie, 2021. "The Coupling Coordination Evaluation of Sustainable Development between Urbanization, Housing Prices, and Affordable Housing in China," Discrete Dynamics in Nature and Society, Hindawi, vol. 2021, pages 1-14, August.
    4. Mejia-Dorantes, Lucia & Paez, Antonio & Vassallo, Jose Manuel, 2012. "Transportation infrastructure impacts on firm location: the effect of a new metro line in the suburbs of Madrid," Journal of Transport Geography, Elsevier, vol. 22(C), pages 236-250.
    5. Junjie Hong & Zhaofang Chu & Qiang Wang, 2011. "Transport infrastructure and regional economic growth: evidence from China," Transportation, Springer, vol. 38(5), pages 737-752, September.
    6. Doina Olaru & Simon Moncrieff & Gary McCarney & Yuchao Sun & Tristan Reed & Cate Pattison & Brett Smith & Sharon Biermann, 2019. "Place vs. Node Transit: Planning Policies Revisited," Sustainability, MDPI, vol. 11(2), pages 1-14, January.
    7. Zhang, Yuerong & Marshall, Stephen & Manley, Ed, 2019. "Network criticality and the node-place-design model: Classifying metro station areas in Greater London," Journal of Transport Geography, Elsevier, vol. 79(C), pages 1-1.
    8. Cummings, Christopher & Mahmassani, Hani, 2022. "Does intercity rail station placement matter? Expansion of the node-place model to identify station location impacts on Amtrak ridership," Journal of Transport Geography, Elsevier, vol. 99(C).
    9. Yena Song & Keumsook Lee & William Anderson & T. Lakshmanan, 2012. "Industrial agglomeration and transport accessibility in metropolitan Seoul," Journal of Geographical Systems, Springer, vol. 14(3), pages 299-318, July.
    10. Ying Liang & Wei Song & Xiaofeng Dong, 2021. "Evaluating the Space Use of Large Railway Hub Station Areas in Beijing toward Integrated Station-City Development," Land, MDPI, vol. 10(11), pages 1-22, November.
    11. Wenjie Xu & Xiaoping Zhang & Qian Xu & Huiling Gong & Qing Li & Bo Liu & Jingwei Zhang, 2020. "Study on the Coupling Coordination Relationship between Water-Use Efficiency and Economic Development," Sustainability, MDPI, vol. 12(3), pages 1-13, February.
    12. Daniel Chatman & Robert Noland, 2011. "Do Public Transport Improvements Increase Agglomeration Economies? A Review of Literature and an Agenda for Research," Transport Reviews, Taylor & Francis Journals, vol. 31(6), pages 725-742.
    13. Kopsch, Fredrik, 2012. "A demand model for domestic air travel in Sweden," Journal of Air Transport Management, Elsevier, vol. 20(C), pages 46-48.
    14. ZhiMei Tao, 2019. "Research on the Degree of Coupling between the Urban Public Infrastructure System and the Urban Economic, Social, and Environmental System: A Case Study in Beijing, China," Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-19, September.
    15. Banerjee, Abhijit & Duflo, Esther & Qian, Nancy, 2020. "On the road: Access to transportation infrastructure and economic growth in China," Journal of Development Economics, Elsevier, vol. 145(C).
    16. Daniel F Heuermann & Johannes F Schmieder, 2019. "The effect of infrastructure on worker mobility: evidence from high-speed rail expansion in Germany," Journal of Economic Geography, Oxford University Press, vol. 19(2), pages 335-372.
    17. Kamruzzaman, Md. & Baker, Douglas & Washington, Simon & Turrell, Gavin, 2014. "Advance transit oriented development typology: case study in Brisbane, Australia," Journal of Transport Geography, Elsevier, vol. 34(C), pages 54-70.
    18. Hongchang Li, 2022. "Transportation and Economy," Springer Books, in: Spatiotemporal Transportation Economics Development: Theories and Practices in China and Beyond, chapter 0, pages 129-148, Springer.
    19. Mateusz Tomal, 2021. "Analysing the coupling coordination degree of socio-economic-infrastructural development and its obstacles: the case study of Polish rural municipalities," Applied Economics Letters, Taylor & Francis Journals, vol. 28(13), pages 1098-1103, July.
    20. Beyazit, Eda, 2015. "Are wider economic impacts of transport infrastructures always beneficial? Impacts of the Istanbul Metro on the generation of spatio-economic inequalities," Journal of Transport Geography, Elsevier, vol. 45(C), pages 12-23.
    21. Kim, Hyojin & Sultana, Selima & Weber, Joe, 2018. "A geographic assessment of the economic development impact of Korean high-speed rail stations," Transport Policy, Elsevier, vol. 66(C), pages 127-137.
    22. Wang, Xipan & Song, Junnian & Duan, Haiyan & Wang, Xian'en, 2021. "Coupling between energy efficiency and industrial structure: An urban agglomeration case," Energy, Elsevier, vol. 234(C).
    23. Vale, David S. & Viana, Cláudia M. & Pereira, Mauro, 2018. "The extended node-place model at the local scale: Evaluating the integration of land use and transport for Lisbon's subway network," Journal of Transport Geography, Elsevier, vol. 69(C), pages 282-293.
    24. Evert Meijers & Martijn Burger & Evert J. Meijers & Martijn J. Burger & Marloes M. Hoogerbrugge, 2016. "Borrowing size in networks of cities: City size, network connectivity and metropolitan functions in Europe," Papers in Regional Science, Wiley Blackwell, vol. 95(1), pages 181-198, March.
    25. Jin, Jangik & Rafferty, Peter, 2017. "Does congestion negatively affect income growth and employment growth? Empirical evidence from US metropolitan regions," Transport Policy, Elsevier, vol. 55(C), pages 1-8.
    26. Junfang Yuan & Zhengfu Bian & Qingwu Yan & Yuanqing Pan, 2019. "Spatio-Temporal Distributions of the Land Use Efficiency Coupling Coordination Degree in Mining Cities of Western China," Sustainability, MDPI, vol. 11(19), pages 1-19, September.
    27. Davis, Lucas W., 2021. "Estimating the price elasticity of demand for subways: Evidence from Mexico," Regional Science and Urban Economics, Elsevier, vol. 87(C).
    28. Junfeng Yin & Haimeng Liu & Peiji Shi & Weiping Zhang & Ning Cai, 2021. "Exploring Coupling Relationship between Urban Connection and High-quality Development Using the Case of Lanzhou-Xining Urban Agglomeration," Complexity, Hindawi, vol. 2021, pages 1-12, November.
    29. Lin, Yatang, 2017. "Travel costs and urban specialization patterns: Evidence from China’s high speed railway system," Journal of Urban Economics, Elsevier, vol. 98(C), pages 98-123.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mengzhi Zou & Changyou Li & Yanni Xiong, 2022. "Analysis of Coupling Coordination Relationship between the Accessibility and Economic Linkage of a High-Speed Railway Network Case Study in Hunan, China," Sustainability, MDPI, vol. 14(13), pages 1-15, June.
    2. Yingzi Chen & Yaqi Hu & Lina Lai, 2022. "Demography-Oriented Urban Spatial Matching of Service Facilities: Case Study of Changchun, China," Land, MDPI, vol. 11(10), pages 1-22, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mengzhi Zou & Changyou Li & Yanni Xiong, 2022. "Analysis of Coupling Coordination Relationship between the Accessibility and Economic Linkage of a High-Speed Railway Network Case Study in Hunan, China," Sustainability, MDPI, vol. 14(13), pages 1-15, June.
    2. Sun, Yu & Cui, Yin, 2018. "Evaluating the coordinated development of economic, social and environmental benefits of urban public transportation infrastructure: Case study of four Chinese autonomous municipalities," Transport Policy, Elsevier, vol. 66(C), pages 116-126.
    3. Yang, Xiaolan & Wang, Rui & Guo, Dongmei & Sun, Weizeng, 2020. "The reconfiguration effect of China's high-speed railway on intercity connection ——A study based on media attention index," Transport Policy, Elsevier, vol. 95(C), pages 47-56.
    4. Wu, Jiaxian & Liu, Xiuyan & Li, Hao, 2024. "The subway and the gender wage gap," International Review of Economics & Finance, Elsevier, vol. 94(C).
    5. Anyu Chen & Yueran Li & Kunhui Ye & Tianyi Nie & Rui Liu, 2021. "Does Transport Infrastructure Inequality Matter for Economic Growth? Evidence from China," Land, MDPI, vol. 10(8), pages 1-21, August.
    6. Baek, Jisun & Park, WooRam, 2022. "The impact of improved passenger transport system on manufacturing plant productivity," Regional Science and Urban Economics, Elsevier, vol. 96(C).
    7. Xiao Ke & Yuanke Yan, 2021. "Can proactive fiscal policy achieve the goal of “Beyond Keynesianism”?," Review of Development Economics, Wiley Blackwell, vol. 25(2), pages 1078-1103, May.
    8. Zhang, Yuxin & Xu, Dafeng, 2023. "Service on the rise, agriculture and manufacturing in decline: The labor market effects of high-speed rail services in Spain," Transportation Research Part A: Policy and Practice, Elsevier, vol. 171(C).
    9. Yahong Liu & Daisheng Tang & Tao Bu & Xinyuan Wang, 2022. "The spatial employment effect of high-speed railway: quasi-natural experimental evidence from China," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 69(2), pages 333-359, October.
    10. Zhou, Mingzhi & Zhou, Jiali & Zhou, Jiangping & Lei, Shuyu & Zhao, Zhan, 2023. "Introducing social contacts into the node-place model: A case study of Hong Kong," Journal of Transport Geography, Elsevier, vol. 107(C).
    11. Xiao Ke & Justin Yifu Lin & Caihui Fu & Yong Wang, 2020. "Transport Infrastructure Development and Economic Growth in China: Recent Evidence from Dynamic Panel System-GMM Analysis," Sustainability, MDPI, vol. 12(14), pages 1-22, July.
    12. Luisa Dörr & Stefanie Gäbler, 2020. "Does Highway Accessibility Influence Local Tax Factors? Evidence from German Municipalities," ifo Working Paper Series 321, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    13. Champagne, Marie-Pier & Dubé, Jean, 2023. "The impact of transport infrastructure on firms’ location decision: A meta-analysis based on a systematic literature review," Transport Policy, Elsevier, vol. 131(C), pages 139-155.
    14. Champagne, Marie-Pier & Dubé, Jean & Legros, Diègo, 2024. "Standing strong? The causal impact of metro stations on service firms’ survival," Transportation Research Part A: Policy and Practice, Elsevier, vol. 181(C).
    15. Su, Shiliang & Zhang, Hui & Wang, Miao & Weng, Min & Kang, Mengjun, 2021. "Transit-oriented development (TOD) typologies around metro station areas in urban China: A comparative analysis of five typical megacities for planning implications," Journal of Transport Geography, Elsevier, vol. 90(C).
    16. Zheng, Lingwei & Austwick, Martin Zaltz, 2023. "Classifying station areas in greater Manchester using the node-place-design model: A comparative analysis with system centrality and green space coverage," Journal of Transport Geography, Elsevier, vol. 112(C).
    17. Ren, Yi & Tian, Yuan & Xiao, Xue, 2022. "Spatial effects of transportation infrastructure on the development of urban agglomeration integration: Evidence from the Yangtze River Economic Belt," Journal of Transport Geography, Elsevier, vol. 104(C).
    18. Yu, Haitao & Jiao, Junfeng & Houston, Eric & Peng, Zhong-Ren, 2018. "Evaluating the relationship between rail transit and industrial agglomeration: An observation from the Dallas-fort worth region, TX," Journal of Transport Geography, Elsevier, vol. 67(C), pages 33-52.
    19. Wang, Jiating & Cai, Siyuan, 2020. "The construction of high-speed railway and urban innovation capacity: Based on the perspective of knowledge Spillover," China Economic Review, Elsevier, vol. 63(C).
    20. Robillard, Arianne & Boisjoly, Geneviève & van Lierop, Dea, 2024. "Transit-oriented development and bikeability: Classifying public transport station areas in Montreal, Canada," Transport Policy, Elsevier, vol. 148(C), pages 79-91.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:7:p:3808-:d:778041. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.