IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i5p2200-d1352254.html
   My bibliography  Save this article

Valorisation of Sugarcane Bagasse for the Sustainable Production of Polyhydroxyalkanoates

Author

Listed:
  • Soulayma Hassan

    (School of Science, RMIT University, Melbourne, VIC 3083, Australia
    ARC Training Centre for the Transformation of Australia’s Biosolids Resource, RMIT University, Bundoora, VIC 3083, Australia)

  • Tien Ngo

    (School of Science, RMIT University, Melbourne, VIC 3083, Australia
    ARC Training Centre for the Transformation of Australia’s Biosolids Resource, RMIT University, Bundoora, VIC 3083, Australia)

  • Andrew S. Ball

    (School of Science, RMIT University, Melbourne, VIC 3083, Australia
    ARC Training Centre for the Transformation of Australia’s Biosolids Resource, RMIT University, Bundoora, VIC 3083, Australia)

Abstract

With the world shifting towards renewable and sustainable resources, polyhydroxyalkanoates (PHAs) have attracted significant interest as an alternative to synthetic plastics. While possessing promising properties suitable for various applications, the production of PHAs has not yet reached a global commercial scale. The main reason is the high cost of production, which represents a major limitation. Sugarcane bagasse (SCB) is an abundant lignocellulosic waste around the world. Its use to produce PHA enhances the feasibility of producing PHAs at commercial scale. However, SCB requires pretreatment and hydrolysis steps to release the sugars prior to the microbial fermentation. The cost associated with these steps poses additional challenges for large-scale production. Another challenge is the release of inhibitors during the pretreatment process which can result in a low PHA yield. The development of a low cost, co-culture strategy for the bioconversion of SCB into PHAs, can represent a pivotal step towards the large-scale production of bioplastics. This review highlights the advancements made in recent years on the microbial production of PHA using SCB as potential feedstock, with a proposed biological strategy and circular economy model.

Suggested Citation

  • Soulayma Hassan & Tien Ngo & Andrew S. Ball, 2024. "Valorisation of Sugarcane Bagasse for the Sustainable Production of Polyhydroxyalkanoates," Sustainability, MDPI, vol. 16(5), pages 1-20, March.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:5:p:2200-:d:1352254
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/5/2200/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/5/2200/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Irena Wojnowska-Baryła & Katarzyna Bernat & Magdalena Zaborowska, 2022. "Plastic Waste Degradation in Landfill Conditions: The Problem with Microplastics, and Their Direct and Indirect Environmental Effects," IJERPH, MDPI, vol. 19(20), pages 1-15, October.
    2. Simone Bagatella & Riccardo Ciapponi & Elena Ficara & Nicola Frison & Stefano Turri, 2022. "Production and Characterization of Polyhydroxyalkanoates from Wastewater via Mixed Microbial Cultures and Microalgae," Sustainability, MDPI, vol. 14(6), pages 1-19, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maria del Pilar Rodríguez & Edna Vázquez-Vélez & Horacio Martinez & Alvaro Torres-Islas, 2023. "Life Cycle Analysis of a Novel Process from the Automotive Industry in Mexico for Recycling Nylon 6,6 into Polymeric Coatings," Sustainability, MDPI, vol. 15(12), pages 1-13, June.
    2. Anastasiia Sholokhova & Inna Pitak & Gintaras Denafas & Regina Kalpokaitė-Dičkuvienė & Marius Praspaliauskas & Juris Burlakovs, 2023. "An In-Depth Analysis of Physical, Chemical, and Microplastic Parameters of Landfill Fine Fraction for Biocover Construction," Sustainability, MDPI, vol. 15(24), pages 1-13, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:5:p:2200-:d:1352254. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.