IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i6p3603-d774651.html
   My bibliography  Save this article

Exploring Urban Forms Vulnerable to Urban Heat Islands: A Multiscale Analysis

Author

Listed:
  • Seungwon Kang

    (Department of Urban Planning & Engineering, Pusan National University, Busan KS012, Korea)

  • Dalbyul Lee

    (Department of Fire Administration and Disaster Management, Dong-Eui University, Busan KS012, Korea)

  • Jiyong Park

    (Department of Urban Planning & Engineering, Pusan National University, Busan KS012, Korea)

  • Juchul Jung

    (Department of Urban Planning & Engineering, Pusan National University, Busan KS012, Korea)

Abstract

Understanding urban forms vulnerable to urban heat islands provides urban planning measures to improve urban heat islands and offering insight into different sustainable urban forms. The purpose of this study was to investigate the relationship between the urban heat island effect and urban forms, to explore which urban forms are vulnerable to this effect, and to present urban planning measures to alleviate urban heat islands. This study also conducted an analysis on two scales, the macro- and micro-dimensions, to develop policy suggestions for urban heat island mitigation. In the macro-scale analysis, the relationship between urban shape and urban heat islands was investigated through a statistical approach using a regression equation, and in the micro-scale analysis, a spatial analysis method using urban climate zones (LCZs) was used.

Suggested Citation

  • Seungwon Kang & Dalbyul Lee & Jiyong Park & Juchul Jung, 2022. "Exploring Urban Forms Vulnerable to Urban Heat Islands: A Multiscale Analysis," Sustainability, MDPI, vol. 14(6), pages 1-16, March.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:6:p:3603-:d:774651
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/6/3603/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/6/3603/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jochem Van Der Waals, 2000. "The compact city and the environment: a review," Tijdschrift voor Economische en Sociale Geografie, Royal Dutch Geographical Society KNAG, vol. 91(2), pages 111-121, May.
    2. Umberto Berardi & Yupeng Wang, 2016. "The Effect of a Denser City over the Urban Microclimate: The Case of Toronto," Sustainability, MDPI, vol. 8(8), pages 1-11, August.
    3. Kobe Boussauw & Tijs Neutens & Frank Witlox, 2012. "Relationship between Spatial Proximity and Travel-to-Work Distance: The Effect of the Compact City," Regional Studies, Taylor & Francis Journals, vol. 46(6), pages 687-706, September.
    4. Eugenia Kalnay & Ming Cai, 2003. "Impact of urbanization and land-use change on climate," Nature, Nature, vol. 423(6939), pages 528-531, May.
    5. Oecd, 2018. "Climate-resilient infrastructure," OECD Environment Policy Papers 14, OECD Publishing.
    6. Lei Zhao & Xuhui Lee & Ronald B. Smith & Keith Oleson, 2014. "Strong contributions of local background climate to urban heat islands," Nature, Nature, vol. 511(7508), pages 216-219, July.
    7. Avner, Paolo & Rentschler, Jun & Hallegatte, Stephane, 2014. "Carbon price efficiency : lock-in and path dependence in urban forms and transport infrastructure," Policy Research Working Paper Series 6941, The World Bank.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jianshe Liang & Yongping Bai & Zuqiao Gao & Xuedi Yang & Lingwei Li & Chunyue Zhang & Fuwei Qiao, 2022. "A Study on the Dynamic Relationship between Landscape Information and Heat Island Intensity of Urban Growth Patterns—A Case of Five Cities in the Beijing–Tianjin–Hebei City Cluster," Sustainability, MDPI, vol. 14(21), pages 1-20, October.
    2. Yan Liu & Zhijie Wang, 2023. "Research Progress and Hotspot Analysis of Urban Heat Island Effects Based on Cite Space Analysis," Land, MDPI, vol. 12(6), pages 1-19, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emanuele Massaro & Rossano Schifanella & Matteo Piccardo & Luca Caporaso & Hannes Taubenböck & Alessandro Cescatti & Gregory Duveiller, 2023. "Spatially-optimized urban greening for reduction of population exposure to land surface temperature extremes," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Alireza Dehghani & Mehdi Alidadi & Ayyoob Sharifi, 2022. "Compact Development Policy and Urban Resilience: A Critical Review," Sustainability, MDPI, vol. 14(19), pages 1-19, September.
    3. Ke Ding & Xin Huang & Aijun Ding & Minghuai Wang & Hang Su & Veli-Matti Kerminen & Tuukka Petäjä & Zhemin Tan & Zilin Wang & Derong Zhou & Jianning Sun & Hong Liao & Huijun Wang & Ken Carslaw & Robert, 2021. "Aerosol-boundary-layer-monsoon interactions amplify semi-direct effect of biomass smoke on low cloud formation in Southeast Asia," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    4. Qunfang Huang & Yuqi Lu, 2015. "The Effect of Urban Heat Island on Climate Warming in the Yangtze River Delta Urban Agglomeration in China," IJERPH, MDPI, vol. 12(8), pages 1-17, July.
    5. Pengke Shen & Shuqing Zhao, 2021. "1/4 to 1/3 of observed warming trends in China from 1980 to 2015 are attributed to land use changes," Climatic Change, Springer, vol. 164(3), pages 1-19, February.
    6. Rui Wang & Qi Chen & Dexiang Wang, 2022. "Effects of Altitude, Plant Communities, and Canopies on the Thermal Comfort, Negative Air Ions, and Airborne Particles of Mountain Forests in Summer," Sustainability, MDPI, vol. 14(7), pages 1-22, March.
    7. Xiaoqing Lin & Chunyan Lu & Kaishan Song & Ying Su & Yifan Lei & Lianxiu Zhong & Yibin Gao, 2020. "Analysis of Coupling Coordination Variance between Urbanization Quality and Eco-Environment Pressure: A Case Study of the West Taiwan Strait Urban Agglomeration, China," Sustainability, MDPI, vol. 12(7), pages 1-19, March.
    8. Bing Li & Zhifeng Liu & Ying Nan & Shengnan Li & Yanmin Yang, 2018. "Comparative Analysis of Urban Heat Island Intensities in Chinese, Russian, and DPRK Regions across the Transnational Urban Agglomeration of the Tumen River in Northeast Asia," Sustainability, MDPI, vol. 10(8), pages 1-16, July.
    9. Giuseppina A. Giorgio & Maria Ragosta & Vito Telesca, 2017. "Climate Variability and Industrial-Suburban Heat Environment in a Mediterranean Area," Sustainability, MDPI, vol. 9(5), pages 1-10, May.
    10. Saujot, Mathieu & Lefèvre, Benoit, 2016. "The next generation of urban MACCs. Reassessing the cost-effectiveness of urban mitigation options by integrating a systemic approach and social costs," Energy Policy, Elsevier, vol. 92(C), pages 124-138.
    11. Yang, Yuanyuan & Bao, Wenkai & Liu, Yansui, 2020. "Scenario simulation of land system change in the Beijing-Tianjin-Hebei region," Land Use Policy, Elsevier, vol. 96(C).
    12. David Hidalgo García & Julián Arco Díaz & Adelaida Martín Martín & Emilio Gómez Cobos, 2022. "Spatiotemporal Analysis of Urban Thermal Effects Caused by Heat Waves through Remote Sensing," Sustainability, MDPI, vol. 14(19), pages 1-24, September.
    13. Liotta,Charlotte & Avner,Paolo & Viguié,Vincent & Selod,Harris & Hallegatte,Stephane, 2022. "Climate Policy and Inequality in Urban Areas : Beyond Incomes," Policy Research Working Paper Series 10185, The World Bank.
    14. Ahmed, Khalid, 2015. "The sheer scale of China’s urban renewal and CO2 emissions: Multiple structural breaks, long-run relationship and short-run dynamics," MPRA Paper 71035, University Library of Munich, Germany.
    15. Anne A. Gharaibeh & Esra’a M. Al.Zu’bi & Lama B. Abuhassan, 2019. "Amman ( City of Waters ); Policy, Land Use, and Character Changes," Land, MDPI, vol. 8(12), pages 1-25, December.
    16. Isaac Sarfo & Bi Shuoben & Li Beibei & Solomon Obiri Yeboah Amankwah & Emmanuel Yeboah & John Ernest Koku & Edward Kweku Nunoo & Clement Kwang, 2022. "Spatiotemporal development of land use systems, influences and climate variability in Southwestern Ghana (1970–2020)," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(8), pages 9851-9883, August.
    17. Yulong Shu & Kai Lin & Yafang Yu, 2024. "Study on Urban Land Simulation under the Perspective of Local Climate Zoning—A Case Study of Guiyang City," Sustainability, MDPI, vol. 16(18), pages 1-19, September.
    18. Shaojing Jiang, 2023. "Compound Heat Vulnerability in the Record-Breaking Hot Summer of 2022 over the Yangtze River Delta Region," IJERPH, MDPI, vol. 20(8), pages 1-15, April.
    19. Tian, Guangjin & Jiang, Jing & Yang, Zhifeng & Zhang, Yaoqi, 2011. "The urban growth, size distribution and spatio-temporal dynamic pattern of the Yangtze River Delta megalopolitan region, China," Ecological Modelling, Elsevier, vol. 222(3), pages 865-878.
    20. Camacho, Carmen & Pérez-Barahona, Agustín, 2015. "Land use dynamics and the environment," Journal of Economic Dynamics and Control, Elsevier, vol. 52(C), pages 96-118.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:6:p:3603-:d:774651. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.