IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i6p3276-d768611.html
   My bibliography  Save this article

Research on Optimal Operation Model of Virtual Electric Power Plant Considering Net-Zero Carbon Emission

Author

Listed:
  • Yungao Wu

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China
    Department of Mathematics and Computer Engineering, Ordos Institute of Technology, Ordos 017000, China)

  • Jing Wu

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China)

  • Gejirifu De

    (School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China)

  • Wei Fan

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China)

Abstract

“World Energy Outlook 2021” has mentioned the fact that with the current pledges announced, the 2050 net-zero carbon emission target would not be realized. To further improve energy efficiency, energy integration will be important. Therefore, this paper introduced virtual power plant (VPP) and power to gas (P2G) technology to analyze the improvement of energy integration. Firstly, the structure of VPP connected with P2G is proposed, and the physical output model is constructed. Secondly, combined with carbon emission and economic operation objectives, a multi-objective operation optimization model of VPP considering electrical interconnection is constructed, and the solution idea of the model is put forward. Finally, through the case study, the contribution of P2G, DR and GST is proven. With DR, P2G involved in VPP, the goal of carbon emission reduction can be achieved. In addition, the example also proves that carbon trading has a positive effect on energy efficiency and generation uncertainty improving.

Suggested Citation

  • Yungao Wu & Jing Wu & Gejirifu De & Wei Fan, 2022. "Research on Optimal Operation Model of Virtual Electric Power Plant Considering Net-Zero Carbon Emission," Sustainability, MDPI, vol. 14(6), pages 1-19, March.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:6:p:3276-:d:768611
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/6/3276/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/6/3276/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. He, Chuan & Wu, Lei & Liu, Tianqi & Wei, Wei & Wang, Cheng, 2018. "Co-optimization scheduling of interdependent power and gas systems with electricity and gas uncertainties," Energy, Elsevier, vol. 159(C), pages 1003-1015.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammad Hemmati & Mehdi Abapour & Behnam Mohammadi-Ivatloo & Amjad Anvari-Moghaddam, 2020. "Optimal Operation of Integrated Electrical and Natural Gas Networks with a Focus on Distributed Energy Hub Systems," Sustainability, MDPI, vol. 12(20), pages 1-22, October.
    2. Wang, Yunqi & Qiu, Jing & Tao, Yuechuan, 2022. "Robust energy systems scheduling considering uncertainties and demand side emission impacts," Energy, Elsevier, vol. 239(PD).
    3. Zhang, Yachao & Liu, Yan & Shu, Shengwen & Zheng, Feng & Huang, Zhanghao, 2021. "A data-driven distributionally robust optimization model for multi-energy coupled system considering the temporal-spatial correlation and distribution uncertainty of renewable energy sources," Energy, Elsevier, vol. 216(C).
    4. Mirzaei, Mohammad Amin & Sadeghi-Yazdankhah, Ahmad & Mohammadi-Ivatloo, Behnam & Marzband, Mousa & Shafie-khah, Miadreza & Catalão, João P.S., 2019. "Integration of emerging resources in IGDT-based robust scheduling of combined power and natural gas systems considering flexible ramping products," Energy, Elsevier, vol. 189(C).
    5. Dranka, Géremi Gilson & Ferreira, Paula & Vaz, A. Ismael F., 2021. "A review of co-optimization approaches for operational and planning problems in the energy sector," Applied Energy, Elsevier, vol. 304(C).
    6. Zhang, Yachao & Liu, Wei & Huang, Zhanghao & Zheng, Feng & Le, Jian & Zhu, Shu, 2021. "Distributionally robust coordination optimization scheduling for electricity-gas-transportation coupled system considering multiple uncertainties," Renewable Energy, Elsevier, vol. 163(C), pages 2037-2052.
    7. Jiandong Duan & Fan Liu & Yao Yang & Zhuanting Jin, 2021. "Flexible Dispatch for Integrated Power and Gas Systems Considering Power-to-Gas and Demand Response," Energies, MDPI, vol. 14(17), pages 1-26, September.
    8. Zhang, Yachao & Huang, Zhanghao & Zheng, Feng & Zhou, Rongyu & Le, Jian & An, Xueli, 2020. "Cooperative optimization scheduling of the electricity-gas coupled system considering wind power uncertainty via a decomposition-coordination framework," Energy, Elsevier, vol. 194(C).
    9. Wei, Zhinong & Yang, Li & Chen, Sheng & Ma, Zhoujun & Zang, Haixiang & Fei, Youdie, 2022. "A multi-stage planning model for transitioning to low-carbon integrated electric power and natural gas systems," Energy, Elsevier, vol. 254(PC).
    10. Hosseini, Seyed Hamid Reza & Allahham, Adib & Walker, Sara Louise & Taylor, Phil, 2021. "Uncertainty analysis of the impact of increasing levels of gas and electricity network integration and storage on Techno-Economic-Environmental performance," Energy, Elsevier, vol. 222(C).
    11. Raheli, Enrica & Wu, Qiuwei & Zhang, Menglin & Wen, Changyun, 2021. "Optimal coordinated operation of integrated natural gas and electric power systems: A review of modeling and solution methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    12. Yuqi Zhang & Chuan He & Anqi Xv & Xiaoxiao Tang, 2022. "Two-Stage Chance-Constrained Coordinated Operation of an Integrated Gas–Electric System," Energies, MDPI, vol. 15(12), pages 1-18, June.
    13. Wu, Gang & Xiang, Yue & Liu, Junyong & Gou, Jing & Shen, Xiaodong & Huang, Yuan & Jawad, Shafqat, 2020. "Decentralized day-ahead scheduling of multi-area integrated electricity and natural gas systems considering reserve optimization," Energy, Elsevier, vol. 198(C).
    14. Lu, Jun & Liu, Tianqi & He, Chuan & Nan, Lu & Hu, Xiaotong, 2021. "Robust day-ahead coordinated scheduling of multi-energy systems with integrated heat-electricity demand response and high penetration of renewable energy," Renewable Energy, Elsevier, vol. 178(C), pages 466-482.
    15. Faridpak, Behdad & Farrokhifar, Meisam & Murzakhanov, Ilgiz & Safari, Amin, 2020. "A series multi-step approach for operation Co-optimization of integrated power and natural gas systems," Energy, Elsevier, vol. 204(C).
    16. Qiu, Haifeng & Gu, Wei & Liu, Pengxiang & Sun, Qirun & Wu, Zhi & Lu, Xi, 2022. "Application of two-stage robust optimization theory in power system scheduling under uncertainties: A review and perspective," Energy, Elsevier, vol. 251(C).
    17. Nikoobakht, Ahmad & Aghaei, Jamshid & Shafie-khah, Miadreza & Catalão, João P.S., 2020. "Co-operation of electricity and natural gas systems including electric vehicles and variable renewable energy sources based on a continuous-time model approach," Energy, Elsevier, vol. 200(C).
    18. Hasanzad, Fardin & Rastegar, Hasan, 2022. "Application of optimal hardening for improving resilience of integrated power and natural gas system in case of earthquake," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    19. Wang, Cheng & Wei, Wei & Wang, Jianhui & Bi, Tianshu, 2019. "Convex optimization based adjustable robust dispatch for integrated electric-gas systems considering gas delivery priority," Applied Energy, Elsevier, vol. 239(C), pages 70-82.
    20. Qing, Ke & Huang, Qi & Du, Yuefang & Jiang, Lin & Bamisile, Olusola & Hu, Weihao, 2023. "Distributionally robust unit commitment with an adjustable uncertainty set and dynamic demand response," Energy, Elsevier, vol. 262(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:6:p:3276-:d:768611. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.