IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i6p3257-d768276.html
   My bibliography  Save this article

Aquatic Plants and Aquatic Animals in the Context of Sustainability: Cultivation Techniques, Integration, and Blue Revolution

Author

Listed:
  • Abdallah Tageldein Mansour

    (Animal and Fish Production Department, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
    Fish and Animal Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt)

  • Mohamed Ashour

    (National Institute of Oceanography and Fisheries (NIOF), Cairo 11516, Egypt)

  • Ahmed E. Alprol

    (National Institute of Oceanography and Fisheries (NIOF), Cairo 11516, Egypt)

  • Ahmed Saud Alsaqufi

    (Animal and Fish Production Department, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia)

Abstract

The aquaculture industry has rapidly increased in response to the increasing world population, with the appreciation that aquaculture products are beneficial for human health and nutrition. Globally, aquaculture organisms are mainly divided into two divisions, aquatic animals (finfish, crustaceans, and molluscs) and aquatic plants (microalgae and seaweed). Worldwide aquaculture production has reached more than 82 million tonnes (MTs) in 2018 with more than 450 cultured species. The development of economical, environmentally friendly, and large-scale feasible technologies to produce aquaculture organisms (even aquatic animals and/or aquatic plants) is an essential need of the world. Some aquaculture technologies are related to aquatic animals or aquatic plants, as well as some technologies have an integrated system. This integration between aquatic plants and aquatic animals could be performed during early larvae rearing, on-growing and/or mass production. In the context of the blue revolution, the current review focuses on the generations of integration between aquatic plants and aquatic animals, such as live feeds, biomass concentrates, water conditioners “green water technique”, aqua-feed additives, co-culturing technologies, and integrated multi-trophic aquaculture (IMTA). This review could shed light on the benefit of aquatic animals and plant integration, which could lead future low-cost, highly efficient, and sustainable aquaculture industry projects.

Suggested Citation

  • Abdallah Tageldein Mansour & Mohamed Ashour & Ahmed E. Alprol & Ahmed Saud Alsaqufi, 2022. "Aquatic Plants and Aquatic Animals in the Context of Sustainability: Cultivation Techniques, Integration, and Blue Revolution," Sustainability, MDPI, vol. 14(6), pages 1-28, March.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:6:p:3257-:d:768276
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/6/3257/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/6/3257/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shimaa M. Hassan & Mohamed Ashour & Nobumitsu Sakai & Lixin Zhang & Hesham A. Hassanien & Ahmed Gaber & Gamal Ammar, 2021. "Impact of Seaweed Liquid Extract Biostimulant on Growth, Yield, and Chemical Composition of Cucumber ( Cucumis sativus )," Agriculture, MDPI, vol. 11(4), pages 1-16, April.
    2. Rosamond L. Naylor & Rebecca J. Goldburg & Jurgenne H. Primavera & Nils Kautsky & Malcolm C. M. Beveridge & Jason Clay & Carl Folke & Jane Lubchenco & Harold Mooney & Max Troell, 2000. "Effect of aquaculture on world fish supplies," Nature, Nature, vol. 405(6790), pages 1017-1024, June.
    3. Mohamed A. Zaki & Mohamed Ashour & Ahmed M. M. Heneash & Mohamed M. Mabrouk & Ahmed E. Alprol & Hanan M. Khairy & Abdelaziz M. Nour & Abdallah Tageldein Mansour & Hesham A. Hassanien & Ahmed Gaber & M, 2021. "Potential Applications of Native Cyanobacterium Isolate ( Arthrospira platensis NIOF17/003) for Biodiesel Production and Utilization of Its Byproduct in Marine Rotifer ( Brachionus plicatilis ) Produc," Sustainability, MDPI, vol. 13(4), pages 1-16, February.
    4. Rosamond L. Naylor & Ronald W. Hardy & Alejandro H. Buschmann & Simon R. Bush & Ling Cao & Dane H. Klinger & David C. Little & Jane Lubchenco & Sandra E. Shumway & Max Troell, 2021. "A 20-year retrospective review of global aquaculture," Nature, Nature, vol. 591(7851), pages 551-563, March.
    5. Shimaa M. Hassan & Mohamed Ashour & Ahmed A. F. Soliman & Hesham A. Hassanien & Walaa F. Alsanie & Ahmed Gaber & Mostafa E. Elshobary, 2021. "The Potential of a New Commercial Seaweed Extract in Stimulating Morpho-Agronomic and Bioactive Properties of Eruca vesicaria (L.) Cav," Sustainability, MDPI, vol. 13(8), pages 1-19, April.
    6. Khamael M. Abualnaja & Ahmed E. Alprol & M. A. Abu-Saied & Mohamed Ashour & Abdallah Tageldein Mansour, 2021. "Removing of Anionic Dye from Aqueous Solutions by Adsorption Using of Multiwalled Carbon Nanotubes and Poly (Acrylonitrile-styrene) Impregnated with Activated Carbon," Sustainability, MDPI, vol. 13(13), pages 1-23, June.
    7. Hamdy A. Abo-Taleb & Mohamed Ashour & Mohamed A. Elokaby & Mohamed M. Mabrouk & Mohamed M. M. El-feky & Othman F. Abdelzaher & Ahmed Gaber & Walaa F. Alsanie & Abdallah Tageldein Mansour, 2021. "Effect of a New Feed Daphnia magna (Straus, 1820), as a Fish Meal Substitute on Growth, Feed Utilization, Histological Status, and Economic Revenue of Grey Mullet, Mugil cephalus (Linnaeus 1758)," Sustainability, MDPI, vol. 13(13), pages 1-15, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christopher Shaw & Klaus Knopf & Werner Kloas, 2022. "Fish Feeds in Aquaponics and Beyond: A Novel Concept to Evaluate Protein Sources in Diets for Circular Multitrophic Food Production Systems," Sustainability, MDPI, vol. 14(7), pages 1-30, March.
    2. Ingunn Y. Gudbrandsdottir & Nína M. Saviolidis & Gudrun Olafsdottir & Gudmundur V. Oddsson & Hlynur Stefansson & Sigurdur G. Bogason, 2021. "Transition Pathways for the Farmed Salmon Value Chain: Industry Perspectives and Sustainability Implications," Sustainability, MDPI, vol. 13(21), pages 1-23, November.
    3. Shimaa M. Hassan & Mohamed Ashour & Ahmed A. F. Soliman & Hesham A. Hassanien & Walaa F. Alsanie & Ahmed Gaber & Mostafa E. Elshobary, 2021. "The Potential of a New Commercial Seaweed Extract in Stimulating Morpho-Agronomic and Bioactive Properties of Eruca vesicaria (L.) Cav," Sustainability, MDPI, vol. 13(8), pages 1-19, April.
    4. Amir Neori & Moshe Agami, 2024. "Low-Income Fish Consumers’ Subsidies to the Fish Reduction Industry: The Case of Forage Fish," World, MDPI, vol. 5(3), pages 1-20, September.
    5. Zeke Marshall & Paul E. Brockway, 2020. "A Net Energy Analysis of the Global Agriculture, Aquaculture, Fishing and Forestry System," Biophysical Economics and Resource Quality, Springer, vol. 5(2), pages 1-27, June.
    6. Ariel E. Turcios & Jutta Papenbrock, 2014. "Sustainable Treatment of Aquaculture Effluents—What Can We Learn from the Past for the Future?," Sustainability, MDPI, vol. 6(2), pages 1-21, February.
    7. Juszczyk, Juliusz, 2015. "Światowy rynek łososia hodowlanego – stan i perspektywy," Problems of World Agriculture / Problemy Rolnictwa Światowego, Warsaw University of Life Sciences, vol. 15(30), pages 1-12, September.
    8. repec:mse:cesdoc:13002r is not listed on IDEAS
    9. Christopher Shaw & Klaus Knopf & Werner Kloas, 2022. "Toward Feeds for Circular Multitrophic Food Production Systems: Holistically Evaluating Growth Performance and Nutrient Excretion of African Catfish Fed Fish Meal-Free Diets in Comparison to Nile Tila," Sustainability, MDPI, vol. 14(21), pages 1-31, November.
    10. Asche, Frank & Oglend, Atle, 2016. "The relationship between input-factor and output prices in commodity industries: The case of Norwegian salmon aquaculture," Journal of Commodity Markets, Elsevier, vol. 1(1), pages 35-47.
    11. Zoe G Nichols & Scott Rikard & Sayyed Mohammad Hadi Alavi & William C Walton & Ian A E Butts, 2021. "Regulation of sperm motility in Eastern oyster (Crassostrea virginica) spawning naturally in seawater with low salinity," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-24, March.
    12. Lipper, Leslie & Cavatassi, Romina & Symons, Ricci & Gordes, Alashiya & Page, Oliver, 2022. "IFAD Research Series 85: Financing climate adaptation and resilient agricultural livelihoods," IFAD Research Series 322020, International Fund for Agricultural Development (IFAD).
    13. Nesar Ahmed & Shirley Thompson & Giovanni M. Turchini, 2020. "Organic aquaculture productivity, environmental sustainability, and food security: insights from organic agriculture," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(6), pages 1253-1267, December.
    14. Hughes, Conchúr & King, Jonathan W., 2023. "Habitat suitability modelling for an integrated multi-trophic aquaculture (IMTA) system along Europe's Atlantic coast," Ecological Modelling, Elsevier, vol. 484(C).
    15. Katherine Elizabeth Drury & Felicity Victoria Crotty, 2022. "Developing the Use of Wool Rope within Aquaculture—A Systematic Review," Sustainability, MDPI, vol. 14(15), pages 1-17, July.
    16. József Popp & László Váradi & Emese Békefi & András Péteri & Gergő Gyalog & Zoltán Lakner & Judit Oláh, 2018. "Evolution of Integrated Open Aquaculture Systems in Hungary: Results from a Case Study," Sustainability, MDPI, vol. 10(1), pages 1-19, January.
    17. Thaler, S. & Zessner, M. & Weigl, M. & Rechberger, H. & Schilling, K. & Kroiss, H., 2015. "Possible implications of dietary changes on nutrient fluxes, environment and land use in Austria," Agricultural Systems, Elsevier, vol. 136(C), pages 14-29.
    18. Prein, M., 2002. "Integration of aquaculture into crop-animal systems in Asia," Agricultural Systems, Elsevier, vol. 71(1-2), pages 127-146.
    19. Walsh, Michael J. & Gerber Van Doren, Léda & Shete, Nilam & Prakash, Akshay & Salim, Usama, 2018. "Financial tradeoffs of energy and food uses of algal biomass under stochastic conditions," Applied Energy, Elsevier, vol. 210(C), pages 591-603.
    20. Naylor, Rosamond & Fang, Safari & Fanzo, Jessica, 2023. "A global view of aquaculture policy," Food Policy, Elsevier, vol. 116(C).
    21. Shimaa M. Hassan & Mohamed Ashour & Nobumitsu Sakai & Lixin Zhang & Hesham A. Hassanien & Ahmed Gaber & Gamal Ammar, 2021. "Impact of Seaweed Liquid Extract Biostimulant on Growth, Yield, and Chemical Composition of Cucumber ( Cucumis sativus )," Agriculture, MDPI, vol. 11(4), pages 1-16, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:6:p:3257-:d:768276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.