IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i5p2628-d757434.html
   My bibliography  Save this article

Regional Landslide Hazard Assessment Using Extreme Value Analysis and a Probabilistic Physically Based Approach

Author

Listed:
  • Hyuck-Jin Park

    (Department of Energy Resources and Geosystem Engineering, Sejong University, Seoul 05006, Korea)

  • Kang-Min Kim

    (Department of Geography, Kyung Hee University, Seoul 02453, Korea)

  • In-Tak Hwang

    (Department of Energy Resources and Geosystem Engineering, Sejong University, Seoul 05006, Korea)

  • Jung-Hyun Lee

    (Department of Energy Resources and Geosystem Engineering, Sejong University, Seoul 05006, Korea)

Abstract

The accurate assessment of landslide hazards is important in order to reduce the casualties and damage caused by landslides. Landslide hazard assessment combines the evaluation of spatial and temporal probabilities. Although various statistical approaches have been used to estimate spatial probability, these methods only evaluate the statistical relationships between factors that have triggered landslides in the past rather than the slope failure process. Therefore, a physically based approach with probabilistic analysis was adopted here to estimate the spatial distribution of landslide probability. Meanwhile, few studies have addressed temporal probability because historical records of landslides are not available for most areas of the world. Therefore, an indirect approach based on rainfall frequency and using extreme value analysis and the Gumbel distribution is proposed and used in this study. In addition, to incorporate the nonstationary characteristics of rainfall data, an expanding window approach was used to evaluate changes in the mean annual maximum rainfall and the location and scale parameters of the Gumbel distribution. Using this approach, the temporal probabilities of future landslides were estimated and integrated with spatial probabilities to assess and map landslide hazards.

Suggested Citation

  • Hyuck-Jin Park & Kang-Min Kim & In-Tak Hwang & Jung-Hyun Lee, 2022. "Regional Landslide Hazard Assessment Using Extreme Value Analysis and a Probabilistic Physically Based Approach," Sustainability, MDPI, vol. 14(5), pages 1-17, February.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:5:p:2628-:d:757434
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/5/2628/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/5/2628/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Giuseppe Sorbino & Carlo Sica & Leonardo Cascini, 2010. "Susceptibility analysis of shallow landslides source areas using physically based models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 53(2), pages 313-332, May.
    2. Dieu Tien Bui & Biswajeet Pradhan & Owe Lofman & Inge Revhaug & Øystein Dick, 2013. "Regional prediction of landslide hazard using probability analysis of intense rainfall in the Hoa Binh province, Vietnam," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 707-730, March.
    3. Caterina Melchiorre & Paolo Frattini, 2012. "Modelling probability of rainfall-induced shallow landslides in a changing climate, Otta, Central Norway," Climatic Change, Springer, vol. 113(2), pages 413-436, July.
    4. Mowen Xie & Tetsuro Esaki & Guoyun Zhou, 2004. "GIS-Based Probabilistic Mapping of Landslide Hazard Using a Three-Dimensional Deterministic Model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 33(2), pages 265-282, October.
    5. H. A. Nefeslioglu & C. Gokceoglu, 2011. "Probabilistic Risk Assessment in Medium Scale for Rainfall-Induced Earthflows: Catakli Catchment Area (Cayeli, Rize, Turkey)," Mathematical Problems in Engineering, Hindawi, vol. 2011, pages 1-21, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aihua Wei & Kaining Yu & Fenggang Dai & Fuji Gu & Wanxi Zhang & Yu Liu, 2022. "Application of Tree-Based Ensemble Models to Landslide Susceptibility Mapping: A Comparative Study," Sustainability, MDPI, vol. 14(10), pages 1-15, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chong Xu & Xiwei Xu & Fuchu Dai & Zhide Wu & Honglin He & Feng Shi & Xiyan Wu & Suning Xu, 2013. "Application of an incomplete landslide inventory, logistic regression model and its validation for landslide susceptibility mapping related to the May 12, 2008 Wenchuan earthquake of China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(2), pages 883-900, September.
    2. Kai Wang & Shaojie Zhang, 2021. "Rainfall-induced landslides assessment in the Fengjie County, Three-Gorge reservoir area, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 451-478, August.
    3. Cheng Lian & Zhigang Zeng & Wei Yao & Huiming Tang, 2013. "Displacement prediction model of landslide based on a modified ensemble empirical mode decomposition and extreme learning machine," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 759-771, March.
    4. Luca Piciullo & Vittoria Capobianco & Håkon Heyerdahl, 2022. "A first step towards a IoT-based local early warning system for an unsaturated slope in Norway," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 3377-3407, December.
    5. Vorpahl, Peter & Elsenbeer, Helmut & Märker, Michael & Schröder, Boris, 2012. "How can statistical models help to determine driving factors of landslides?," Ecological Modelling, Elsevier, vol. 239(C), pages 27-39.
    6. Ogbonnaya Igwe & Chinero Nneka Ayogu & Raphael Iweanya Maduka & Nnadozie Onyekachi Ayogu & Tochukwu A. S. Ugwoke, 2023. "Slope failures and safety index assessment of waste rock dumps in Nigeria’s major mines," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(2), pages 1331-1370, January.
    7. Bambang H. Trisasongko & Dyah R. Panuju & Amy L. Griffin & David J. Paull, 2022. "Fully Polarimetric L-Band Synthetic Aperture Radar for the Estimation of Tree Girth as a Representative of Stand Productivity in Rubber Plantations," Geographies, MDPI, vol. 2(2), pages 1-13, March.
    8. Hao Wang & Guanghui Hu & Junfei Ma & Hong Wei & Sijin Li & Guoan Tang & Liyang Xiong, 2023. "Classifying Slope Unit by Combining Terrain Feature Lines Based on Digital Elevation Models," Land, MDPI, vol. 12(1), pages 1-20, January.
    9. Melanie Kunz & Adrienne Grêt-Regamey & Lorenz Hurni, 2011. "Visualization of uncertainty in natural hazards assessments using an interactive cartographic information system," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(3), pages 1735-1751, December.
    10. Aminreza Neshat & Biswajeet Pradhan, 2015. "Risk assessment of groundwater pollution with a new methodological framework: application of Dempster–Shafer theory and GIS," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(3), pages 1565-1585, September.
    11. Elias Garcia-Urquia, 2016. "Establishing rainfall frequency contour lines as thresholds for rainfall-induced landslides in Tegucigalpa, Honduras, 1980–2005," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(3), pages 2107-2132, July.
    12. Malcolm Anderson & Liz Holcombe & Rob Flory & Jean-Philippe Renaud, 2008. "Implementing low-cost landslide risk reduction: a pilot study in unplanned housing areas of the Caribbean," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 47(3), pages 297-315, December.
    13. Zhuo Chen & Fei Ye & Wenxi Fu & Yutian Ke & Haoyuan Hong, 2020. "The influence of DEM spatial resolution on landslide susceptibility mapping in the Baxie River basin, NW China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 101(3), pages 853-877, April.
    14. Francesco Fusco & Massimiliano Bordoni & Rita Tufano & Valerio Vivaldi & Claudia Meisina & Roberto Valentino & Marco Bittelli & Pantaleone De Vita, 2022. "Hydrological regimes in different slope environments and implications on rainfall thresholds triggering shallow landslides," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(1), pages 907-939, October.
    15. Sebastiano Perriello Zampelli & Eliana Bellucci Sessa & Marco Cavallaro, 2012. "Application of a GIS-aided method for the assessment of volcaniclastic soil sliding susceptibility to sample areas of Campania (Southern Italy)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(1), pages 155-168, March.
    16. Lorenzo Sangelantoni & Eleonora Gioia & Fausto Marincioni, 2018. "Impact of climate change on landslides frequency: the Esino river basin case study (Central Italy)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(2), pages 849-884, September.
    17. Sheng Ma & Jian Chen & Saier Wu & Yurou Li, 2023. "Landslide Susceptibility Prediction Using Machine Learning Methods: A Case Study of Landslides in the Yinghu Lake Basin in Shaanxi," Sustainability, MDPI, vol. 15(22), pages 1-26, November.
    18. Qigen Lin & Ying Wang & Thomas Glade & Jiahui Zhang & Yue Zhang, 2020. "Assessing the spatiotemporal impact of climate change on event rainfall characteristics influencing landslide occurrences based on multiple GCM projections in China," Climatic Change, Springer, vol. 162(2), pages 761-779, September.
    19. Yinping Nie & Xiuzhen Li & Wendy Zhou & Ruichi Xu, 2021. "Dynamic hazard assessment of group-occurring debris flows based on a coupled model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 2635-2661, April.
    20. Dhanya Madhu & G. K. Nithya & S. Sreekala & Maneesha Vinodini Ramesh, 2024. "Regional-scale landslide modeling using machine learning and GIS: a case study for Idukki district, Kerala, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(11), pages 9935-9956, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:5:p:2628-:d:757434. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.