IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i6p2551-d1360460.html
   My bibliography  Save this article

Wind Load and Wind-Induced Vibration of Photovoltaic Supports: A Review

Author

Listed:
  • Bo Nan

    (College of Water Conservancy, Shenyang Agricultural University, Shenyang 110866, China)

  • Yuanpeng Chi

    (College of Water Conservancy, Shenyang Agricultural University, Shenyang 110866, China)

  • Yingchun Jiang

    (College of Engineering, Shenyang Agricultural University, Shenyang 110866, China)

  • Yikui Bai

    (College of Water Conservancy, Shenyang Agricultural University, Shenyang 110866, China)

Abstract

(1) Background: As environmental issues gain more attention, switching from conventional energy has become a recurring theme. This has led to the widespread development of photovoltaic (PV) power generation systems. PV supports, which support PV power generation systems, are extremely vulnerable to wind loads. For sustainable development, corresponding wind load research should be carried out on PV supports. (2) Methods: First, the effects of several variables, including the body-type coefficient, wind direction angle, and panel inclination angle, on the wind loads of PV supports are discussed. Secondly, the wind-induced vibration of PV supports is studied. Finally, the calculation method of the wind load on PV supports is summarized. (3) Conclusions: According to the particularity of the PV support structure, the impact of different factors on the PV support’s wind load should be comprehensively considered, and a more accurate method should be adopted to evaluate and calculate the wind load to lessen the damage that a PV support’s wind-induced vibration causes, improve the force safety of PV supports, and thereby enhance the power generation efficiency of PV systems.

Suggested Citation

  • Bo Nan & Yuanpeng Chi & Yingchun Jiang & Yikui Bai, 2024. "Wind Load and Wind-Induced Vibration of Photovoltaic Supports: A Review," Sustainability, MDPI, vol. 16(6), pages 1-25, March.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:6:p:2551-:d:1360460
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/6/2551/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/6/2551/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Erdem Cuce & Pinar Mert Cuce & Shaik Saboor & Aritra Ghosh & Yahya Sheikhnejad, 2022. "Floating PVs in Terms of Power Generation, Environmental Aspects, Market Potential, and Challenges," Sustainability, MDPI, vol. 14(5), pages 1-25, February.
    2. Muhammad Hanif Ainun Azhar & Salh Alhammadi & Seokjin Jang & Jitaek Kim & Jungtaek Kim & Woo Kyoung Kim, 2023. "Long-Term Field Observation of the Power Generation and System Temperature of a Roof-Integrated Photovoltaic System in South Korea," Sustainability, MDPI, vol. 15(12), pages 1-15, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alberto Ghigo & Emilio Faraggiana & Massimo Sirigu & Giuliana Mattiazzo & Giovanni Bracco, 2022. "Design and Analysis of a Floating Photovoltaic System for Offshore Installation: The Case Study of Lampedusa," Energies, MDPI, vol. 15(23), pages 1-30, November.
    2. Laura Essak & Aritra Ghosh, 2022. "Floating Photovoltaics: A Review," Clean Technol., MDPI, vol. 4(3), pages 1-18, August.
    3. Changcheng Li & Haoran Li & Hao Yue & Jinfeng Lv & Jian Zhang, 2024. "Flexibility Value of Multimodal Hydrogen Energy Utilization in Electric–Hydrogen–Thermal Systems," Sustainability, MDPI, vol. 16(12), pages 1-25, June.
    4. C.J., Ramanan & Lim, King Hann & Kurnia, Jundika Candra & Roy, Sukanta & Bora, Bhaskor Jyoti & Medhi, Bhaskar Jyoti, 2024. "Towards sustainable power generation: Recent advancements in floating photovoltaic technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 194(C).
    5. Md. Imamul Islam & Mohd Shawal Jadin & Ahmed Al Mansur & Nor Azwan Mohamed Kamari & Taskin Jamal & Molla Shahadat Hossain Lipu & Mohd Nurulakla Mohd Azlan & Mahidur R. Sarker & A. S. M. Shihavuddin, 2023. "Techno-Economic and Carbon Emission Assessment of a Large-Scale Floating Solar PV System for Sustainable Energy Generation in Support of Malaysia’s Renewable Energy Roadmap," Energies, MDPI, vol. 16(10), pages 1-32, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:6:p:2551-:d:1360460. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.