IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i4p1980-d745609.html
   My bibliography  Save this article

Smart Bio-Agents-Activated Sustainable Self-Healing Cementitious Materials: An All-Inclusive Overview on Progress, Benefits and Challenges

Author

Listed:
  • Ghasan Fahim Huseien

    (Department of the Built Environment, College of Design and Engineering, National University of Singapore, Singapore 117566, Singapore)

  • Moncef L. Nehdi

    (Department of Civil Engineering, McMaster University, Hamilton, ON L8S 4M6, Canada)

  • Iman Faridmehr

    (Institute of Architecture and Construction, South Ural State University, Lenin Prospect 76, 454080 Chelyabinsk, Russia)

  • Sib Krishna Ghoshal

    (Department of Physics, AOMRG & Laser Centre, Faculty of Science, Universiti Teknologi Malaysia (UTM), Skudai 81310, Malaysia)

  • Hussein K. Hamzah

    (Department of Reinforced Concrete Constructions, Faculty of Civil, Agricultural and Industrial, Technical University of Civil Engineering Bucharest, Bulevardul Lacul Tei 124, Sect. 2, 020396 Bucharest, Romania)

  • Omrane Benjeddou

    (Department of Civil Engineering, College of Engineering, Prince Sattam Bin Abdulaziz University, Alkharj 16273, Saudi Arabia)

  • Fahed Alrshoudi

    (Department of Civil Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia)

Abstract

Cementitious materials deteriorate progressively with the formation of cracks that occur due to diverse physical, chemical, thermal, and biological processes. Numerous strategies have been adopted to obtain cement-based self-healing materials and determine the novel self-healing mechanisms. The uses of microbes have been established to improve the thickness of the healed crack and mechanical properties of the concrete, a phenomenon seldom addressed in the literature. Based on these factors, this article comprehensively appraises the smart bio-agents-based autonomous healing performance of concrete to demonstrate the recent progress, expected benefits, and ongoing challenges. The fundamentals, design strategies, and efficacy of the smart bio-agents-activated self-healing cementitious materials are the recurring themes of this overview. Furthermore, the effects of various processing parameters on the performance of cementitious self-healing smart bio-agents are discussed in-depth. The achievements, knowledge gaps, and needs for future research in this ever-evolving area for the sustainability and resilience of the built environment are highlighted.

Suggested Citation

  • Ghasan Fahim Huseien & Moncef L. Nehdi & Iman Faridmehr & Sib Krishna Ghoshal & Hussein K. Hamzah & Omrane Benjeddou & Fahed Alrshoudi, 2022. "Smart Bio-Agents-Activated Sustainable Self-Healing Cementitious Materials: An All-Inclusive Overview on Progress, Benefits and Challenges," Sustainability, MDPI, vol. 14(4), pages 1-37, February.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:4:p:1980-:d:745609
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/4/1980/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/4/1980/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. S. R. White & N. R. Sottos & P. H. Geubelle & J. S. Moore & M. R. Kessler & S. R. Sriram & E. N. Brown & S. Viswanathan, 2001. "Autonomic healing of polymer composites," Nature, Nature, vol. 409(6822), pages 794-797, February.
    2. Fahim Huseien, Ghasan & Mirza, Jahangir & Ismail, Mohammad & Ghoshal, S.K. & Abdulameer Hussein, Ahmed, 2017. "Geopolymer mortars as sustainable repair material: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 54-74.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marieh B. Al-Handawi & Patrick Commins & Ahmed S. Dalaq & Pedro A. Santos-Florez & Srujana Polavaram & Pascal Didier & Durga Prasad Karothu & Qiang Zhu & Mohammed Daqaq & Liang Li & PanĨe Naumov, 2024. "Ferroelastic ionic organic crystals that self-heal to 95%," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. H R Williams & R S Trask & I P Bond, 2011. "A probabilistic approach for design and certification of self-healing advanced composite structures," Journal of Risk and Reliability, , vol. 225(4), pages 435-449, December.
    3. Saikat Mondal & Pratap Tanari & Samrat Roy & Surojit Bhunia & Rituparno Chowdhury & Arun K. Pal & Ayan Datta & Bipul Pal & C. Malla Reddy, 2023. "Autonomous self-healing organic crystals for nonlinear optics," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Ghasan Fahim Huseien & Kwok Wei Shah, 2021. "Potential Applications of 5G Network Technology for Climate Change Control: A Scoping Review of Singapore," Sustainability, MDPI, vol. 13(17), pages 1-26, August.
    5. Alexander D. Snyder & Zachary J. Phillips & Jack S. Turicek & Charles E. Diesendruck & Kalyana B. Nakshatrala & Jason F. Patrick, 2022. "Prolonged in situ self-healing in structural composites via thermo-reversible entanglement," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Gorshkov, Vyacheslav & Privman, Vladimir & Libert, Sergiy, 2016. "Lattice percolation approach to 3D modeling of tissue aging," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 207-216.
    7. Joud Hwalla & Jad Bawab & Hilal El-Hassan & Feras Abu Obaida & Tamer El-Maaddawy, 2023. "Scientometric Analysis of Global Research on the Utilization of Geopolymer Composites in Construction Applications," Sustainability, MDPI, vol. 15(14), pages 1-37, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:4:p:1980-:d:745609. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.