IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i3p1645-d739224.html
   My bibliography  Save this article

Mathematical Model for the Electric Vehicle Routing Problem Considering the State of Charge of the Batteries

Author

Listed:
  • Cristian Cataldo-Díaz

    (School of Industrial Engineering, Universidad del Bío-Bío, Concepcion 4030000, Chile)

  • Rodrigo Linfati

    (Department of Industrial Engineering, Universidad del Bío-Bío, Concepcion 4030000, Chile)

  • John Willmer Escobar

    (Department of Accounting and Finance, Universidad del Valle, Cali 760001, Colombia)

Abstract

In recent decades, scientific interest has grown in tackling the vehicle routing problem with a sustainable approach (Green VRP). There are numerous studies in the literature addressing environmental problems from the point of view of efficient planning that allows visualizing the benefits associated with the use of the new technologies in electric vehicles. This paper focuses on the electric vehicle routing problem and considers the batteries’ state of charge (SoC). The problem considers a set of customers, where each one has a specific demand and a time window. Deliveries are performed through a homogeneous fleet of electric vehicles with a fixed charging capacity and limited autonomy. In particular, when the vehicle is traveling, it consumes an amount of energy proportional to the distance it travels; therefore, it must visit battery recharging stations to continue and complete its route. The objective is to determine the performed routes with the minimum cost (time), while seeking to visit the recharging stations as many times as possible. In this way, overcharging and deep discharges are avoided by protecting the battery from degradation. In this paper, four models are proposed: the first model requires that the battery be fully charged in the stations; the second model allows partial recharging; the third formulation limits deep discharge; and a fourth formulation adheres to a limitation associated with overcharging and tries to keep the battery in its most comfortable place. The efficiency of the proposed formulations is tested in structured instances of different sizes. The results obtained show the efficiency of the formulations proposed for the electric vehicle routing problem when considering battery degradation.

Suggested Citation

  • Cristian Cataldo-Díaz & Rodrigo Linfati & John Willmer Escobar, 2022. "Mathematical Model for the Electric Vehicle Routing Problem Considering the State of Charge of the Batteries," Sustainability, MDPI, vol. 14(3), pages 1-26, January.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:3:p:1645-:d:739224
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/3/1645/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/3/1645/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tolga Bektaş & Emrah Demir & Gilbert Laporte, 2016. "Green Vehicle Routing," International Series in Operations Research & Management Science, in: Harilaos N. Psaraftis (ed.), Green Transportation Logistics, edition 127, chapter 0, pages 243-265, Springer.
    2. Pelletier, Samuel & Jabali, Ola & Laporte, Gilbert & Veneroni, Marco, 2017. "Battery degradation and behaviour for electric vehicles: Review and numerical analyses of several models," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 158-187.
    3. Ziwen Ling & Christopher R. Cherry & Yi Wen, 2021. "Determining the Factors That Influence Electric Vehicle Adoption: A Stated Preference Survey Study in Beijing, China," Sustainability, MDPI, vol. 13(21), pages 1-22, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xinhua Gao & Song Liu & Yan Wang & Dennis Z. Yu & Yong Peng & Xianting Ma, 2024. "Consideration of Carbon Emissions in Multi-Trip Delivery Optimization of Unmanned Vehicles," Sustainability, MDPI, vol. 16(6), pages 1-26, March.
    2. Hongwen Han & Luxian Chen & Sitong Fang & Yang Liu, 2023. "The Routing Problem for Electric Truck with Partial Nonlinear Charging and Battery Swapping," Sustainability, MDPI, vol. 15(18), pages 1-29, September.
    3. Yong Wang & Jingxin Zhou & Yaoyao Sun & Xiuwen Wang & Jiayi Zhe & Haizhong Wang, 2022. "Electric Vehicle Charging Station Location-Routing Problem with Time Windows and Resource Sharing," Sustainability, MDPI, vol. 14(18), pages 1-31, September.
    4. Garside, Annisa Kesy & Ahmad, Robiah & Muhtazaruddin, Mohd Nabil Bin, 2024. "A recent review of solution approaches for green vehicle routing problem and its variants," Operations Research Perspectives, Elsevier, vol. 12(C).
    5. Abdulaziz Almutairi & Naif Albagami & Sultanh Almesned & Omar Alrumayh & Hasmat Malik, 2023. "Electric Vehicle Load Estimation at Home and Workplace in Saudi Arabia for Grid Planners and Policy Makers," Sustainability, MDPI, vol. 15(22), pages 1-16, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Asghari, Mohammad & Mirzapour Al-e-hashem, S. Mohammad J., 2021. "Green vehicle routing problem: A state-of-the-art review," International Journal of Production Economics, Elsevier, vol. 231(C).
    2. Masmoudi, Mohamed Amine & Hosny, Manar & Demir, Emrah & Genikomsakis, Konstantinos N. & Cheikhrouhou, Naoufel, 2018. "The dial-a-ride problem with electric vehicles and battery swapping stations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 392-420.
    3. Malladi, Satya S. & Christensen, Jonas M. & Ramírez, David & Larsen, Allan & Pacino, Dario, 2022. "Stochastic fleet mix optimization: Evaluating electromobility in urban logistics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    4. Mohammad Asghari & Seyed Mohammad Javad Mirzapour Al-E-Hashem, 2021. "Green vehicle routing problem: A state-of-the-art review," Post-Print hal-03182944, HAL.
    5. Zhou, Yu & Meng, Qiang & Ong, Ghim Ping, 2022. "Electric Bus Charging Scheduling for a Single Public Transport Route Considering Nonlinear Charging Profile and Battery Degradation Effect," Transportation Research Part B: Methodological, Elsevier, vol. 159(C), pages 49-75.
    6. Gansterer, Margaretha & Hartl, Richard F. & Sörensen, Kenneth, 2020. "Pushing frontiers in auction-based transport collaborations," Omega, Elsevier, vol. 94(C).
    7. Barelli, L. & Bidini, G. & Bonucci, F. & Castellini, L. & Fratini, A. & Gallorini, F. & Zuccari, A., 2019. "Flywheel hybridization to improve battery life in energy storage systems coupled to RES plants," Energy, Elsevier, vol. 173(C), pages 937-950.
    8. Ehmke, Jan Fabian & Campbell, Ann M. & Thomas, Barrett W., 2018. "Optimizing for total costs in vehicle routing in urban areas," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 242-265.
    9. Iogansen, Xiatian & Wang, Kailai & Bunch, David & Matson, Grant & Circella, Giovanni, 2023. "Deciphering the factors associated with adoption of alternative fuel vehicles in California: An investigation of latent attitudes, socio-demographics, and neighborhood effects," Transportation Research Part A: Policy and Practice, Elsevier, vol. 168(C).
    10. Yang Xia & Wenjia Zeng & Xinjie Xing & Yuanzhu Zhan & Kim Hua Tan & Ajay Kumar, 2023. "Joint optimisation of drone routing and battery wear for sustainable supply chain development: a mixed-integer programming model based on blockchain-enabled fleet sharing," Annals of Operations Research, Springer, vol. 327(1), pages 89-127, August.
    11. Wang, Hua & Zhao, De & Meng, Qiang & Ong, Ghim Ping & Lee, Der-Horng, 2020. "Network-level energy consumption estimation for electric vehicles considering vehicle and user heterogeneity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 30-46.
    12. Alexander Wahl & Christoph Wellmann & Björn Krautwig & Patrick Manns & Bicheng Chen & Christof Schernus & Jakob Andert, 2022. "Efficiency Increase through Model Predictive Thermal Control of Electric Vehicle Powertrains," Energies, MDPI, vol. 15(4), pages 1-21, February.
    13. Jorge Varela Barreras & Ricardo de Castro & Yihao Wan & Tomislav Dragicevic, 2021. "A Consensus Algorithm for Multi-Objective Battery Balancing," Energies, MDPI, vol. 14(14), pages 1-25, July.
    14. Abdulaziz Alshammari & Rakan C. Chabaan, 2023. "Metaheruistic Optimization Based Ensemble Machine Learning Model for Designing Detection Coil with Prediction of Electric Vehicle Charging Time," Sustainability, MDPI, vol. 15(8), pages 1-17, April.
    15. Sun, Xilei & Fu, Jianqin, 2024. "Many-objective optimization of BEV design parameters based on gradient boosting decision tree models and the NSGA-III algorithm considering the ambient temperature," Energy, Elsevier, vol. 288(C).
    16. Thanh Tung Ha & Thanh Chuong Nguyen & Sy Sua Tu & Minh Hieu Nguyen, 2023. "Investigation of Influential Factors of Intention to Adopt Electric Vehicles for Motorcyclists in Vietnam," Sustainability, MDPI, vol. 15(11), pages 1-16, May.
    17. Park, Sung-Won & Son, Sung-Yong, 2023. "Techno-economic analysis for the electric vehicle battery aging management of charge point operator," Energy, Elsevier, vol. 280(C).
    18. Maximilian Schiffer & Michael Schneider & Grit Walther & Gilbert Laporte, 2019. "Vehicle Routing and Location Routing with Intermediate Stops: A Review," Transportation Science, INFORMS, vol. 53(2), pages 319-343, March.
    19. Feifeng Zheng & Zhaojie Wang & Ming Liu, 2022. "Overnight charging scheduling of battery electric buses with uncertain charging time," Operational Research, Springer, vol. 22(5), pages 4865-4903, November.
    20. Diana Lemian & Florin Bode, 2022. "Battery-Supercapacitor Energy Storage Systems for Electrical Vehicles: A Review," Energies, MDPI, vol. 15(15), pages 1-13, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:3:p:1645-:d:739224. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.