IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i3p1533-d736741.html
   My bibliography  Save this article

Technical and Economic Evaluation for Off-Grid Hybrid Renewable Energy System Using Novel Bonobo Optimizer

Author

Listed:
  • Hassan M. H. Farh

    (Faculty of Construction and Environment, Department of Building and Real Estate, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong)

  • Abdullrahman A. Al-Shamma’a

    (Department of Electrical Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia)

  • Abdullah M. Al-Shaalan

    (Department of Electrical Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia)

  • Abdulaziz Alkuhayli

    (Department of Electrical Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia)

  • Abdullah M. Noman

    (Department of Electrical Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia)

  • Tarek Kandil

    (Department of Electrical and Computer Engineering, College of Engineering and Computing, Georgia Southern University, Statesboro, GA 30460, USA)

Abstract

In this study, a novel bonobo optimizer (BO) technique is applied to find the optimal design for an off-grid hybrid renewable energy system (HRES) that contains a diesel generator, photovoltaics (PV), a wind turbine (WT), and batteries as a storage system. The proposed HRES aims to electrify a remote region in northern Saudi Arabia based on annualized system cost (ASC) minimization and power system reliability enhancement. To differentiate and evaluate the performance, the BO was compared to four recent metaheuristic algorithms, called big-bang–big-crunch (BBBC), crow search (CS), the genetic algorithm (GA), and the butterfly optimization algorithm (BOA), to find the optimal design for the proposed off-grid HRES in terms of optimal and worst solutions captured, mean, convergence rate, and standard deviation. The obtained results reveal the efficacy of BO compared to the other four metaheuristic algorithms where it achieved the optimal solution of the proposed off-grid HRES with the lowest ASC (USD 149,977.2), quick convergence time, and fewer oscillations, followed by BOA (USD 150,236.4). Both the BBBC and GA algorithms failed to capture the global solution and had high convergence time. In addition, they had high standard deviation, which revealed that their solutions were more dispersed with obvious oscillations. These simulation results proved the supremacy of BO in comparison to the other four metaheuristic algorithms.

Suggested Citation

  • Hassan M. H. Farh & Abdullrahman A. Al-Shamma’a & Abdullah M. Al-Shaalan & Abdulaziz Alkuhayli & Abdullah M. Noman & Tarek Kandil, 2022. "Technical and Economic Evaluation for Off-Grid Hybrid Renewable Energy System Using Novel Bonobo Optimizer," Sustainability, MDPI, vol. 14(3), pages 1-18, January.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:3:p:1533-:d:736741
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/3/1533/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/3/1533/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Acuña, Luceny Guzmán & Padilla, Ricardo Vasquez & Mercado, Alcides Santander, 2017. "Measuring reliability of hybrid photovoltaic-wind energy systems: A new indicator," Renewable Energy, Elsevier, vol. 106(C), pages 68-77.
    2. Belmili, Hocine & Haddadi, Mourad & Bacha, Seddik & Almi, Mohamed Fayçal & Bendib, Boualem, 2014. "Sizing stand-alone photovoltaic–wind hybrid system: Techno-economic analysis and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 821-832.
    3. Zhao, Xuejing & Wang, Chen & Su, Jinxia & Wang, Jianzhou, 2019. "Research and application based on the swarm intelligence algorithm and artificial intelligence for wind farm decision system," Renewable Energy, Elsevier, vol. 134(C), pages 681-697.
    4. Khalid Alnowibet & Andres Annuk & Udaya Dampage & Mohamed A. Mohamed, 2021. "Effective Energy Management via False Data Detection Scheme for the Interconnected Smart Energy Hub–Microgrid System under Stochastic Framework," Sustainability, MDPI, vol. 13(21), pages 1-32, October.
    5. Kaiye Gao & Tianshi Wang & Chenjing Han & Jinhao Xie & Ye Ma & Rui Peng, 2021. "A Review of Optimization of Microgrid Operation," Energies, MDPI, vol. 14(10), pages 1-39, May.
    6. Fahd A. Alturki & Abdullrahman A. Al-Shamma’a & Hassan M. H. Farh, 2020. "Simulations and dSPACE Real-Time Implementation of Photovoltaic Global Maximum Power Extraction under Partial Shading," Sustainability, MDPI, vol. 12(9), pages 1-16, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zakaria Belboul & Belgacem Toual & Abdellah Kouzou & Lakhdar Mokrani & Abderrahman Bensalem & Ralph Kennel & Mohamed Abdelrahem, 2022. "Multiobjective Optimization of a Hybrid PV/Wind/Battery/Diesel Generator System Integrated in Microgrid: A Case Study in Djelfa, Algeria," Energies, MDPI, vol. 15(10), pages 1-30, May.
    2. Fernando García-Muñoz & Miguel Alfaro & Guillermo Fuertes & Manuel Vargas, 2022. "DC Optimal Power Flow Model to Assess the Irradiance Effect on the Sizing and Profitability of the PV-Battery System," Energies, MDPI, vol. 15(12), pages 1-16, June.
    3. Adefarati, T. & Bansal, R.C. & Naidoo, R. & Onaolapo, K.A. & Bettayeb, M. & Olulope, P.K. & Sobowale, A.A., 2024. "Design and techno-economic assessment of a standalone photovoltaic-diesel-battery hybrid energy system for electrification of rural areas: A step towards sustainable development," Renewable Energy, Elsevier, vol. 227(C).
    4. Elena Sosnina & Andrey Dar’enkov & Andrey Kurkin & Ivan Lipuzhin & Andrey Mamonov, 2022. "Review of Efficiency Improvement Technologies of Wind Diesel Hybrid Systems for Decreasing Fuel Consumption," Energies, MDPI, vol. 16(1), pages 1-38, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiaxin Lu & Weijun Wang & Yingchao Zhang & Song Cheng, 2017. "Multi-Objective Optimal Design of Stand-Alone Hybrid Energy System Using Entropy Weight Method Based on HOMER," Energies, MDPI, vol. 10(10), pages 1-17, October.
    2. Alvin Henao & Luceny Guzman, 2024. "Exploration of Alternatives to Reduce the Gap in Access to Electricity in Rural Communities—Las Nubes Village Case (Barranquilla, Colombia)," Energies, MDPI, vol. 17(1), pages 1-19, January.
    3. Sulman Shahzad & Muhammad Abbas Abbasi & Hassan Ali & Muhammad Iqbal & Rania Munir & Heybet Kilic, 2023. "Possibilities, Challenges, and Future Opportunities of Microgrids: A Review," Sustainability, MDPI, vol. 15(8), pages 1-28, April.
    4. Khiareddine, Abla & Ben Salah, Chokri & Rekioua, Djamila & Mimouni, Mohamed Faouzi, 2018. "Sizing methodology for hybrid photovoltaic /wind/ hydrogen/battery integrated to energy management strategy for pumping system," Energy, Elsevier, vol. 153(C), pages 743-762.
    5. Xu, Xiao & Hu, Weihao & Cao, Di & Liu, Wen & Huang, Qi & Hu, Yanting & Chen, Zhe, 2021. "Enhanced design of an offgrid PV-battery-methanation hybrid energy system for power/gas supply," Renewable Energy, Elsevier, vol. 167(C), pages 440-456.
    6. Maleki, Akbar & Ameri, Mehran & Keynia, Farshid, 2015. "Scrutiny of multifarious particle swarm optimization for finding the optimal size of a PV/wind/battery hybrid system," Renewable Energy, Elsevier, vol. 80(C), pages 552-563.
    7. Kailai Ni & Jianzhou Wang & Guangyu Tang & Danxiang Wei, 2019. "Research and Application of a Novel Hybrid Model Based on a Deep Neural Network for Electricity Load Forecasting: A Case Study in Australia," Energies, MDPI, vol. 12(13), pages 1-30, June.
    8. Abdullrahman A. Al-Shamma’a & Hammed O. Omotoso & Fahd A. Alturki & Hassan. M. H. Farh & Abdulaziz Alkuhayli & Khalil Alsharabi & Abdullah M. Noman, 2021. "Parameter Estimation of Photovoltaic Cell/Modules Using Bonobo Optimizer," Energies, MDPI, vol. 15(1), pages 1-22, December.
    9. Al Busaidi, Ahmed Said & Kazem, Hussein A & Al-Badi, Abdullah H & Farooq Khan, Mohammad, 2016. "A review of optimum sizing of hybrid PV–Wind renewable energy systems in oman," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 185-193.
    10. Qunpeng Fan, 2022. "Management and Policy Modeling of the Market Using Artificial Intelligence," Sustainability, MDPI, vol. 14(14), pages 1-14, July.
    11. Akhlaque Ahmad Khan & Ahmad Faiz Minai & Rupendra Kumar Pachauri & Hasmat Malik, 2022. "Optimal Sizing, Control, and Management Strategies for Hybrid Renewable Energy Systems: A Comprehensive Review," Energies, MDPI, vol. 15(17), pages 1-29, August.
    12. Qolipour, Mojtaba & Mostafaeipour, Ali & Tousi, Omid Mohseni, 2017. "Techno-economic feasibility of a photovoltaic-wind power plant construction for electric and hydrogen production: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 113-123.
    13. Md Tariqul Islam & M. J. Hossain, 2023. "Artificial Intelligence for Hosting Capacity Analysis: A Systematic Literature Review," Energies, MDPI, vol. 16(4), pages 1-33, February.
    14. Ma, Kai & Zhang, Rencai & Yang, Jie & Song, Debao, 2023. "Collaborative optimization scheduling of integrated energy system considering user dissatisfaction," Energy, Elsevier, vol. 274(C).
    15. Meng, Anbo & Zhu, Zibin & Deng, Weisi & Ou, Zuhong & Lin, Shan & Wang, Chenen & Xu, Xuancong & Wang, Xiaolin & Yin, Hao & Luo, Jianqiang, 2022. "A novel wind power prediction approach using multivariate variational mode decomposition and multi-objective crisscross optimization based deep extreme learning machine," Energy, Elsevier, vol. 260(C).
    16. Jianzhou Wang & Chunying Wu & Tong Niu, 2019. "A Novel System for Wind Speed Forecasting Based on Multi-Objective Optimization and Echo State Network," Sustainability, MDPI, vol. 11(2), pages 1-34, January.
    17. Ghaithan, Ahmed M. & Mohammed, Awsan & Al-Hanbali, Ahmad & Attia, Ahmed M. & Saleh, Haitham, 2022. "Multi-objective optimization of a photovoltaic-wind- grid connected system to power reverse osmosis desalination plant," Energy, Elsevier, vol. 251(C).
    18. Mohammed Kharrich & Salah Kamel & Mohamed H. Hassan & Salah K. ElSayed & Ibrahim B. M. Taha, 2021. "An Improved Heap-Based Optimizer for Optimal Design of a Hybrid Microgrid Considering Reliability and Availability Constraints," Sustainability, MDPI, vol. 13(18), pages 1-25, September.
    19. Patricia Stefan de Carvalho & Julio Cezar Mairesse Siluk & Henrique Luís Sauer Oliveira & Vinicius Jacques Garcia & Jones Luís Schaefer & Ricardo Augusto Cassel & José Renes Pinheiro, 2024. "Diagnosis of the Energy Regulatory Scenario with Emphasis on Smart Energy," International Journal of Energy Economics and Policy, Econjournals, vol. 14(2), pages 11-26, March.
    20. Mahesh, Aeidapu & Sandhu, Kanwarjit Singh, 2015. "Hybrid wind/photovoltaic energy system developments: Critical review and findings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1135-1147.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:3:p:1533-:d:736741. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.