IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2021i1p140-d711387.html
   My bibliography  Save this article

Parameter Estimation of Photovoltaic Cell/Modules Using Bonobo Optimizer

Author

Listed:
  • Abdullrahman A. Al-Shamma’a

    (Electrical Engineering Department, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia)

  • Hammed O. Omotoso

    (Electrical Engineering Department, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia)

  • Fahd A. Alturki

    (Electrical Engineering Department, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia)

  • Hassan. M. H. Farh

    (Electrical Engineering Department, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia)

  • Abdulaziz Alkuhayli

    (Electrical Engineering Department, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia)

  • Khalil Alsharabi

    (Electrical Engineering Department, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia)

  • Abdullah M. Noman

    (Electrical Engineering Department, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia)

Abstract

In this paper, a new application of Bonobo (BO) metaheuristic optimizer is presented for PV parameter extraction. Its processes depict a reproductive approach and the social conduct of Bonobos. The BO algorithm is employed to extract the parameters of both the single diode and double diode model. The good performance of the BO is experimentally investigated on three commercial PV modules (STM6-40 and STP6-120/36) and an R.T.C. France silicon solar cell under various operating circumstances. The algorithm is easy to implement with less computational time. BO is extensively compared to other state of the art algorithms, manta ray foraging optimization (MRFO), artificial bee colony (ABO), particle swarm optimization (PSO), flower pollination algorithm (FPA), and supply-demand-based optimization (SDO) algorithms. Throughout the 50 runs, the BO algorithm has the best performance in terms of minimal simulation time for the R.T.C. France silicon, STM6-40/36 and STP6-120/36 modules. The fitness results obtained through root mean square (RMSE), standard deviation (SD), and consistency of solution demonstrate the robustness of BO.

Suggested Citation

  • Abdullrahman A. Al-Shamma’a & Hammed O. Omotoso & Fahd A. Alturki & Hassan. M. H. Farh & Abdulaziz Alkuhayli & Khalil Alsharabi & Abdullah M. Noman, 2021. "Parameter Estimation of Photovoltaic Cell/Modules Using Bonobo Optimizer," Energies, MDPI, vol. 15(1), pages 1-22, December.
  • Handle: RePEc:gam:jeners:v:15:y:2021:i:1:p:140-:d:711387
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/1/140/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/1/140/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fahd A. Alturki & Abdullrahman A. Al-Shamma’a & Hassan M. H. Farh, 2020. "Simulations and dSPACE Real-Time Implementation of Photovoltaic Global Maximum Power Extraction under Partial Shading," Sustainability, MDPI, vol. 12(9), pages 1-16, May.
    2. Biswas, Partha P. & Suganthan, P.N. & Wu, Guohua & Amaratunga, Gehan A.J., 2019. "Parameter estimation of solar cells using datasheet information with the application of an adaptive differential evolution algorithm," Renewable Energy, Elsevier, vol. 132(C), pages 425-438.
    3. Humada, Ali M. & Hojabri, Mojgan & Mekhilef, Saad & Hamada, Hussein M., 2016. "Solar cell parameters extraction based on single and double-diode models: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 494-509.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Senturk, Ali, 2020. "Investigation of datasheet provided temperature coefficients of photovoltaic modules under various sky profiles at the field by applying a new validation procedure," Renewable Energy, Elsevier, vol. 152(C), pages 644-652.
    2. Li, Shuijia & Gong, Wenyin & Gu, Qiong, 2021. "A comprehensive survey on meta-heuristic algorithms for parameter extraction of photovoltaic models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    3. Ridha, Hussein Mohammed & Hizam, Hashim & Gomes, Chandima & Heidari, Ali Asghar & Chen, Huiling & Ahmadipour, Masoud & Muhsen, Dhiaa Halboot & Alghrairi, Mokhalad, 2021. "Parameters extraction of three diode photovoltaic models using boosted LSHADE algorithm and Newton Raphson method," Energy, Elsevier, vol. 224(C).
    4. Guojiang Xiong & Jing Zhang & Dongyuan Shi & Xufeng Yuan, 2019. "Application of Supply-Demand-Based Optimization for Parameter Extraction of Solar Photovoltaic Models," Complexity, Hindawi, vol. 2019, pages 1-22, November.
    5. Yang, Xinpeng & Li, Dong & Yang, Ruitong & Ma, Yuxin & Duan, Yanjiao & Zhang, Chengjun & Hu, Wanyu & Arıcı, Müslüm, 2023. "Parameter global optimization and climatic adaptability analysis of PCM glazed system for long-term application," Renewable Energy, Elsevier, vol. 217(C).
    6. Yu, Kunjie & Liang, J.J. & Qu, B.Y. & Cheng, Zhiping & Wang, Heshan, 2018. "Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models," Applied Energy, Elsevier, vol. 226(C), pages 408-422.
    7. Mehmet Yesilbudak, 2021. "Parameter Extraction of Photovoltaic Cells and Modules Using Grey Wolf Optimizer with Dimension Learning-Based Hunting Search Strategy," Energies, MDPI, vol. 14(18), pages 1-27, September.
    8. Tong Kang & Jiangang Yao & Min Jin & Shengjie Yang & ThanhLong Duong, 2018. "A Novel Improved Cuckoo Search Algorithm for Parameter Estimation of Photovoltaic (PV) Models," Energies, MDPI, vol. 11(5), pages 1-31, April.
    9. Marcus King & Dacheng Li & Mark Dooner & Saikat Ghosh & Jatindra Nath Roy & Chandan Chakraborty & Jihong Wang, 2021. "Mathematical Modelling of a System for Solar PV Efficiency Improvement Using Compressed Air for Panel Cleaning and Cooling," Energies, MDPI, vol. 14(14), pages 1-18, July.
    10. Chaabane Bouali & Horst Schulte & Abdelkader Mami, 2019. "A High Performance Optimizing Method for Modeling Photovoltaic Cells and Modules Array Based on Discrete Symbiosis Organism Search," Energies, MDPI, vol. 12(12), pages 1-32, June.
    11. Tuyen Nguyen-Duc & Huy Nguyen-Duc & Thinh Le-Viet & Hirotaka Takano, 2020. "Single-Diode Models of PV Modules: A Comparison of Conventional Approaches and Proposal of a Novel Model," Energies, MDPI, vol. 13(6), pages 1-22, March.
    12. Gulin, Marko & Pavlović, Tomislav & Vašak, Mario, 2016. "Photovoltaic panel and array static models for power production prediction: Integration of manufacturers’ and on-line data," Renewable Energy, Elsevier, vol. 97(C), pages 399-413.
    13. Ju, Xing & Pan, Xinyu & Zhang, Zheyang & Xu, Chao & Wei, Gaosheng, 2019. "Thermal and electrical performance of the dense-array concentrating photovoltaic (DA-CPV) system under non-uniform illumination," Applied Energy, Elsevier, vol. 250(C), pages 904-915.
    14. Arabshahi, M.R. & Torkaman, H. & Keyhani, A., 2020. "A method for hybrid extraction of single-diode model parameters of photovoltaics," Renewable Energy, Elsevier, vol. 158(C), pages 236-252.
    15. Santiago Pindado & Javier Cubas & Elena Roibás-Millán & Francisco Bugallo-Siegel & Félix Sorribes-Palmer, 2018. "Assessment of Explicit Models for Different Photovoltaic Technologies," Energies, MDPI, vol. 11(6), pages 1-22, May.
    16. Chen, Zhicong & Wu, Lijun & Lin, Peijie & Wu, Yue & Cheng, Shuying, 2016. "Parameters identification of photovoltaic models using hybrid adaptive Nelder-Mead simplex algorithm based on eagle strategy," Applied Energy, Elsevier, vol. 182(C), pages 47-57.
    17. Mirza, Adeel Feroz & Mansoor, Majad & Zhan, Keyu & Ling, Qiang, 2021. "High-efficiency swarm intelligent maximum power point tracking control techniques for varying temperature and irradiance," Energy, Elsevier, vol. 228(C).
    18. Abbassi, Rabeh & Abbassi, Abdelkader & Jemli, Mohamed & Chebbi, Souad, 2018. "Identification of unknown parameters of solar cell models: A comprehensive overview of available approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 453-474.
    19. Efstratios Batzelis, 2019. "Non-Iterative Methods for the Extraction of the Single-Diode Model Parameters of Photovoltaic Modules: A Review and Comparative Assessment," Energies, MDPI, vol. 12(3), pages 1-26, January.
    20. Ma, Liang & Chen, Bin & Wang, Xiaodong & Zhu, Zhengqiu & Wang, Rongxiao & Qiu, Xiaogang, 2019. "The analysis on the desired speed in social force model using a data driven approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 894-911.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2021:i:1:p:140-:d:711387. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.