IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i3p1143-d728940.html
   My bibliography  Save this article

Optimization of Wall Thickness Based on a Comprehensive Evaluation Index of Thermal Mass and Insulation

Author

Listed:
  • Shenwei Yu

    (School of Architecture and Urban Planning, Beijing University of Civil Engineering and Architecture, Beijing 100044, China)

  • Shimeng Hao

    (School of Architecture and Urban Planning, Beijing University of Civil Engineering and Architecture, Beijing 100044, China)

  • Jun Mu

    (School of Architecture and Urban Planning, Beijing University of Civil Engineering and Architecture, Beijing 100044, China)

  • Dongwei Tian

    (School of Architecture and Urban Planning, Beijing University of Civil Engineering and Architecture, Beijing 100044, China)

Abstract

The thermal performance of buildings in the south of China focuses on thermal mass design, while in the north it favors thermal insulation design, which makes it impossible to achieve a balance between the thermal mass and insulation. Here, a comprehensive evaluation index is developed to measure the thermal performance of a building’s external envelope, which aims to find out the optimal range of the wall thickness under the influence of the thermal mass and insulation, and to seek the correct balance between a building’s energy consumption and the thermal performance of walls. In this paper, four dimensions, namely the heat transfer coefficient, thermal inertia index, attenuation degree, and delay time, are discussed, and the weight coefficients of each subfactor are calculated and isotropically treated to create comprehensive evaluation indicators. Then the distribution laws of the composite index values of common building materials in different climatic zones are examined. The result shows that the correlation coefficient (R 2 ) between M and building energy consumption is about 0.7736–0.8215, which is higher than 0.3494–0.384, the heat transfer coefficient, and is more accurate in predicting building energy demands. Furthermore, through the analysis of the thermal improvement rate and the building energy-saving rate, the suitable wall thickness of commonly used building materials in different climate zones is determined, and the application prospects of the research results are described. With the above research findings, the thickness ranges of walls can be determined at the initial period of building design by combining regional environmental factors and material characteristics to provide a reference for building energy-saving design.

Suggested Citation

  • Shenwei Yu & Shimeng Hao & Jun Mu & Dongwei Tian, 2022. "Optimization of Wall Thickness Based on a Comprehensive Evaluation Index of Thermal Mass and Insulation," Sustainability, MDPI, vol. 14(3), pages 1-22, January.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:3:p:1143-:d:728940
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/3/1143/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/3/1143/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daouas, Naouel, 2016. "Impact of external longwave radiation on optimum insulation thickness in Tunisian building roofs based on a dynamic analytical model," Applied Energy, Elsevier, vol. 177(C), pages 136-148.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jianheng Chen & Lin Lu & Linrui Jia & Quan Gong, 2023. "Performance Evaluation of High-Rise Buildings Integrated with Colored Radiative Cooling Walls in a Hot and Humid Region," Sustainability, MDPI, vol. 15(16), pages 1-17, August.
    2. Shenwei Yu & Shimeng Hao & Jun Mu & Dongwei Tian & Mosha Zhao, 2022. "Research on Optimization of the Thermal Performance of Composite Rammed Earth Construction," Energies, MDPI, vol. 15(4), pages 1-23, February.
    3. Xu, Ruoyu & Liu, Xiaochen & Liu, Xiaohua & Zhang, Tao, 2024. "Quantifying the energy flexibility potential of a centralized air-conditioning system: A field test study of hub airports," Energy, Elsevier, vol. 298(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saafi, Khawla & Daouas, Naouel, 2019. "Energy and cost efficiency of phase change materials integrated in building envelopes under Tunisia Mediterranean climate," Energy, Elsevier, vol. 187(C).
    2. Saafi, Khawla & Daouas, Naouel, 2018. "A life-cycle cost analysis for an optimum combination of cool coating and thermal insulation of residential building roofs in Tunisia," Energy, Elsevier, vol. 152(C), pages 925-938.
    3. Carlos-Antonio Domínguez-Torres & Helena Domínguez-Torres & Antonio Domínguez-Delgado, 2021. "Optimization of a Combination of Thermal Insulation and Cool Roof for the Refurbishment of Social Housing in Southern Spain," Sustainability, MDPI, vol. 13(19), pages 1-32, September.
    4. Antonio Dominguez-Delgado & Helena Domínguez-Torres & Carlos-Antonio Domínguez-Torres, 2020. "Energy and Economic Life Cycle Assessment of Cool Roofs Applied to the Refurbishment of Social Housing in Southern Spain," Sustainability, MDPI, vol. 12(14), pages 1-35, July.
    5. Shilei Lu & Zichen Wang & Tianshuai Zhang, 2020. "Quantitative Analysis and Multi-Index Evaluation of the Green Building Envelope Performance in the Cold Area of China," Sustainability, MDPI, vol. 12(1), pages 1-38, January.
    6. Peter Juras, 2022. "Positive Aspects of Green Roof Reducing Energy Consumption in Winter," Energies, MDPI, vol. 15(4), pages 1-14, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:3:p:1143-:d:728940. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.