IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i4p1519-d752556.html
   My bibliography  Save this article

Research on Optimization of the Thermal Performance of Composite Rammed Earth Construction

Author

Listed:
  • Shenwei Yu

    (School of Architecture and Urban Planning, Beijing University of Civil Engineering and Architecture, Beijing 100044, China)

  • Shimeng Hao

    (School of Architecture and Urban Planning, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
    State Key Laboratory of Subtropical Building Science, South China University of Technology, Guangzhou 510006, China)

  • Jun Mu

    (School of Architecture and Urban Planning, Beijing University of Civil Engineering and Architecture, Beijing 100044, China)

  • Dongwei Tian

    (School of Architecture and Urban Planning, Beijing University of Civil Engineering and Architecture, Beijing 100044, China)

  • Mosha Zhao

    (Institute for Acoustics and Building Physics, University of Stuttgart, Pfaffenwaldring 7, 70569 Stuttgart, Germany)

Abstract

Rammed earth (RE) is a low-tech recyclable building material with good heat storage and moisture absorption performance that can better maintain the stability of the indoor thermal environment and improve indoor comfort. With innovations in and the development of new technology, the field of rammed earth construction technology is gradually expanding. However, deficiencies in the thermal insulation of traditional rammed earth structures make it impossible for them to meet China’s building energy codes in cold regions. This study constructs a comprehensive evaluation index of the thermal performance of rammed earth walls that is based on the heat transfer mechanism, optimizing the thickness of the boundary conditions of the building interior’s design temperature, as well as the energy demand and economic efficiency. This research also offers a new design for the thermal insulation of rammed earth construction by combining the building energy savings design code with WUFI Pro software. This study demonstrates that the optimum thickness of rammed earth construction in Beijing is about 360 mm, the thickness of extruded polystyrene board (XPS) is 50 mm (for public buildings) and 70 mm (for residential buildings), and the structural form of external insulation offers the highest performance benefit. In addition, this work also evaluates the risk of condensation inside composite rammed earth construction, finding that there is a risk of condensation on the exterior side of the wall and at the interface between the insulation panels and rammed earth wall, thus requiring an additional moisture-proof layer. In this study, thermal mass and insulation are fully considered and a design strategy for rammed earth construction given quantitatively, providing a theoretical basis for the application of rammed earth materials in cold regions.

Suggested Citation

  • Shenwei Yu & Shimeng Hao & Jun Mu & Dongwei Tian & Mosha Zhao, 2022. "Research on Optimization of the Thermal Performance of Composite Rammed Earth Construction," Energies, MDPI, vol. 15(4), pages 1-23, February.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1519-:d:752556
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/4/1519/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/4/1519/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shenwei Yu & Shimeng Hao & Jun Mu & Dongwei Tian, 2022. "Optimization of Wall Thickness Based on a Comprehensive Evaluation Index of Thermal Mass and Insulation," Sustainability, MDPI, vol. 14(3), pages 1-22, January.
    2. Shilei Lu & Zichen Wang & Tianshuai Zhang, 2020. "Quantitative Analysis and Multi-Index Evaluation of the Green Building Envelope Performance in the Cold Area of China," Sustainability, MDPI, vol. 12(1), pages 1-38, January.
    3. Serrano, Susana & de Gracia, Alvaro & Cabeza, Luisa F., 2016. "Adaptation of rammed earth to modern construction systems: Comparative study of thermal behavior under summer conditions," Applied Energy, Elsevier, vol. 175(C), pages 180-188.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ariadna Carrobé & Lídia Rincón & Ingrid Martorell, 2021. "Thermal Monitoring and Simulation of Earthen Buildings. A Review," Energies, MDPI, vol. 14(8), pages 1-47, April.
    2. Xu, Ruoyu & Liu, Xiaochen & Liu, Xiaohua & Zhang, Tao, 2024. "Quantifying the energy flexibility potential of a centralized air-conditioning system: A field test study of hub airports," Energy, Elsevier, vol. 298(C).
    3. Belen Moreno Santamaria & Fernando del Ama Gonzalo & Matthew Griffin & Benito Lauret Aguirregabiria & Juan A. Hernandez Ramos, 2021. "Life Cycle Assessment of Dynamic Water Flow Glazing Envelopes: A Case Study with Real Test Facilities," Energies, MDPI, vol. 14(8), pages 1-17, April.
    4. Jianheng Chen & Lin Lu & Linrui Jia & Quan Gong, 2023. "Performance Evaluation of High-Rise Buildings Integrated with Colored Radiative Cooling Walls in a Hot and Humid Region," Sustainability, MDPI, vol. 15(16), pages 1-17, August.
    5. Quan Wen & Zhongfu Li & Yifeng Peng & Baorong Guo, 2020. "Assessing the Effectiveness of Building Information Modeling in Developing Green Buildings from a Lifecycle Perspective," Sustainability, MDPI, vol. 12(23), pages 1-20, November.
    6. Su, Yuan & Wang, Linwei & Feng, Wei & Zhou, Nan & Wang, Luyuan, 2021. "Analysis of green building performance in cold coastal climates: An in-depth evaluation of green buildings in Dalian, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    7. Giada Giuffrida & Maurizio Detommaso & Francesco Nocera & Rosa Caponetto, 2021. "Design Optimisation Strategies for Solid Rammed Earth Walls in Mediterranean Climates," Energies, MDPI, vol. 14(2), pages 1-23, January.
    8. Ben-Alon, L. & Loftness, V. & Harries, K.A. & Cochran Hameen, E., 2021. "Life cycle assessment (LCA) of natural vs conventional building assemblies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    9. Zhenmin Yuan & Jianliang Zhou & Yaning Qiao & Yadi Zhang & Dandan Liu & Hui Zhu, 2020. "BIM-VE-Based Optimization of Green Building Envelope from the Perspective of both Energy Saving and Life Cycle Cost," Sustainability, MDPI, vol. 12(19), pages 1-16, September.
    10. Anna Laura Pisello & Claudia Fabiani & Nastaran Makaremi & Veronica Lucia Castaldo & Gianluca Cavalaglio & Andrea Nicolini & Marco Barbanera & Franco Cotana, 2016. "Sustainable New Brick and Thermo-Acoustic Insulation Panel from Mineralization of Stranded Driftwood Residues," Energies, MDPI, vol. 9(8), pages 1-20, August.
    11. Mu, Jun & Yu, Shenwei & Hao, Shimeng, 2023. "Quantitative evaluation of thermal conductivity of earth materials with different particle size distributions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    12. Qinglong Gao & Tao Wu & Lei Liu & Yong Yao & Bin Jiang, 2022. "Prediction of Wall and Indoor Hygrothermal Properties of Rammed Earth Folk House in Northwest Sichuan," Energies, MDPI, vol. 15(5), pages 1-16, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1519-:d:752556. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.