IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i2p693-d720682.html
   My bibliography  Save this article

Comparison between Heat Flow Meter (HFM) and Thermometric (THM) Method for Building Wall Thermal Characterization: Latest Advances and Critical Review

Author

Listed:
  • Luca Evangelisti

    (Department of Industrial, Electronic and Mechanical Engineering, Roma Tre University, 00146 Rome, Italy)

  • Andrea Scorza

    (Department of Industrial, Electronic and Mechanical Engineering, Roma Tre University, 00146 Rome, Italy)

  • Roberto De Lieto Vollaro

    (Department of Industrial, Electronic and Mechanical Engineering, Roma Tre University, 00146 Rome, Italy)

  • Salvatore Andrea Sciuto

    (Department of Industrial, Electronic and Mechanical Engineering, Roma Tre University, 00146 Rome, Italy)

Abstract

It is well-known that on-site measurements are suitable for verifying the actual thermal performance of buildings. Performance assessed in situ, under actual thermal conditions, can substantially vary from the theoretical values. Therefore, experimental measurements are essential for better comprehending the thermal behavior of building components, by applying measurement systems and methods suitable to acquire data related to temperatures, heat flows and air speeds both related to the internal and external environments. These data can then be processed to compute performance indicators, such as the well-known thermal transmittance (U-value). This review aims at focusing on two experimental techniques: the widely used and standardized heat flow meter (HFM) method and the quite new thermometric (THM) method. Several scientific papers were analyzed to provide an overview on the latest advances related to these techniques, thus providing a focused critical review. This paper aims to be a valuable resource for academics and practitioners as it covers basic theory, in situ measurement equipment and criteria for sensor installation, errors, and new data post-processing methods.

Suggested Citation

  • Luca Evangelisti & Andrea Scorza & Roberto De Lieto Vollaro & Salvatore Andrea Sciuto, 2022. "Comparison between Heat Flow Meter (HFM) and Thermometric (THM) Method for Building Wall Thermal Characterization: Latest Advances and Critical Review," Sustainability, MDPI, vol. 14(2), pages 1-18, January.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:2:p:693-:d:720682
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/2/693/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/2/693/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ballarini, Ilaria & Corrado, Vincenzo & Madonna, Francesco & Paduos, Simona & Ravasio, Franco, 2017. "Energy refurbishment of the Italian residential building stock: energy and cost analysis through the application of the building typology," Energy Policy, Elsevier, vol. 105(C), pages 148-160.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sanjin Gumbarević & Bojan Milovanović & Bojana Dalbelo Bašić & Mergim Gaši, 2022. "Combining Deep Learning and the Heat Flux Method for In-Situ Thermal-Transmittance Measurement Improvement," Energies, MDPI, vol. 15(14), pages 1-19, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Constantinos A. Balaras & Andreas I. Theodoropoulos & Elena G. Dascalaki, 2023. "Geographic Information Systems for Facilitating Audits of the Urban Built Environment," Energies, MDPI, vol. 16(11), pages 1-26, May.
    2. Roberta Pernetti & Riccardo Pinotti & Roberto Lollini, 2021. "Repository of Deep Renovation Packages Based on Industrialized Solutions: Definition and Application," Sustainability, MDPI, vol. 13(11), pages 1-18, June.
    3. Besagni, Giorgio & Premoli Vilà, Lidia & Borgarello, Marco & Trabucchi, Andrea & Merlo, Marco & Rodeschini, Jacopo & Finazzi, Francesco, 2021. "Electrification pathways of the Italian residential sector under socio-demographic constrains: Looking towards 2040," Energy, Elsevier, vol. 217(C).
    4. Luis M. López-Ochoa & Jesús Las-Heras-Casas & Luis M. López-González & César García-Lozano, 2020. "Energy Renovation of Residential Buildings in Cold Mediterranean Zones Using Optimized Thermal Envelope Insulation Thicknesses: The Case of Spain," Sustainability, MDPI, vol. 12(6), pages 1-34, March.
    5. Fahlstedt, Oskar & Temeljotov-Salaj, Alenka & Lohne, Jardar & Bohne, Rolf André, 2022. "Holistic assessment of carbon abatement strategies in building refurbishment literature — A scoping review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    6. Jorge Lopes & Rui A. F. Oliveira & Nerija Banaitiene & Audrius Banaitis, 2021. "A Staged Approach for Energy Retrofitting an Old Service Building: A Cost-Optimal Assessment," Energies, MDPI, vol. 14(21), pages 1-23, October.
    7. Besagni, Giorgio & Borgarello, Marco & Premoli Vilà, Lidia & Najafi, Behzad & Rinaldi, Fabio, 2020. "MOIRAE – bottom-up MOdel to compute the energy consumption of the Italian REsidential sector: Model design, validation and evaluation of electrification pathways," Energy, Elsevier, vol. 211(C).
    8. Miriam Berretta & Joshua Furgeson & Yue (Nicole) Wu & Collins Zamawe & Ian Hamilton & John Eyers, 2021. "Residential energy efficiency interventions: A meta‐analysis of effectiveness studies," Campbell Systematic Reviews, John Wiley & Sons, vol. 17(4), December.
    9. Hasim Altan & Bertug Ozarisoy, 2022. "An Analysis of the Development of Modular Building Design Elements to Improve Thermal Performance of a Representative High Rise Residential Estate in the Coastline City of Famagusta, Cyprus," Sustainability, MDPI, vol. 14(7), pages 1-50, March.
    10. Shen, Pengyuan & Yang, Biao, 2020. "Projecting Texas energy use for residential sector under future climate and urbanization scenarios: A bottom-up method based on twenty-year regional energy use data," Energy, Elsevier, vol. 193(C).
    11. Joana Fernandes & Maria Catarina Santos & Rui Castro, 2021. "Introductory Review of Energy Efficiency in Buildings Retrofits," Energies, MDPI, vol. 14(23), pages 1-18, December.
    12. Bonati, A. & De Luca, G. & Fabozzi, S. & Massarotti, N. & Vanoli, L., 2019. "The integration of exergy criterion in energy planning analysis for 100% renewable system," Energy, Elsevier, vol. 174(C), pages 749-767.
    13. Jaromir Vrbka & Tomas Krulicky & Tomas Brabenec & Jan Hejda, 2020. "Determining the Increase in a Building’s Appreciation Rate Due to a Reconstruction," Sustainability, MDPI, vol. 12(18), pages 1-13, September.
    14. Amar Bennadji & Mohammed Seddiki & Jamal Alabid & Richard Laing & David Gray, 2022. "Predicting Energy Savings of the UK Housing Stock under a Step-by-Step Energy Retrofit Scenario towards Net-Zero," Energies, MDPI, vol. 15(9), pages 1-18, April.
    15. Linlin Zhao & Zhansheng Liu & Jasper Mbachu, 2019. "Energy Management through Cost Forecasting for Residential Buildings in New Zealand," Energies, MDPI, vol. 12(15), pages 1-24, July.
    16. Lamberto Tronchin & Kristian Fabbri & Maria Cristina Tommasino, 2023. "A Comparison of Thermal Insulation with Interstitial Condensation in Different Climate Contexts in Existing Buildings in Europe," Energies, MDPI, vol. 16(4), pages 1-15, February.
    17. Vera Amicarelli & Christian Bux & Giovanni Lagioia & Teodoro Gallucci, 2019. "Energy Efficiency Policies in Non-Residential Buildings: the Case of the University of Bari Aldo Moro," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 21(S13), pages 845-845, November.
    18. Maria Ferrara & Valentina Monetti & Enrico Fabrizio, 2018. "Cost-Optimal Analysis for Nearly Zero Energy Buildings Design and Optimization: A Critical Review," Energies, MDPI, vol. 11(6), pages 1-32, June.
    19. Bienvenido-Huertas, David & Moyano, Juan & Marín, David & Fresco-Contreras, Rafael, 2019. "Review of in situ methods for assessing the thermal transmittance of walls," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 356-371.
    20. Pedinotti-Castelle, Marianne & Astudillo, Miguel F. & Pineau, Pierre-Olivier & Amor, Ben, 2019. "Is the environmental opportunity of retrofitting the residential sector worth the life cycle cost? A consequential assessment of a typical house in Quebec," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 428-439.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:2:p:693-:d:720682. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.