IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i24p16960-d1006905.html
   My bibliography  Save this article

A Case Study: Layout Optimization of Three Gorges Wind Farm Pakistan, Using Genetic Algorithm

Author

Listed:
  • Muhammad Bin Ali

    (Department of Mechanical Engineering, School of Engineering (SEN), University of Management & Technology, C II Johar Town, Lahore 54770, Pakistan)

  • Zeshan Ahmad

    (Department of Mechanical Engineering, School of Engineering (SEN), University of Management & Technology, C II Johar Town, Lahore 54770, Pakistan)

  • Saad Alshahrani

    (Department of Mechanical Engineering, College of Engineering, King Khalid University, P.O. Box 394, Abha 61421, Saudi Arabia)

  • Muhammad Rizwan Younis

    (Department of Mechanical Engineering, School of Engineering (SEN), University of Management & Technology, C II Johar Town, Lahore 54770, Pakistan)

  • Irsa Talib

    (Department of Mechanical Engineering, School of Engineering (SEN), University of Management & Technology, C II Johar Town, Lahore 54770, Pakistan)

  • Muhammad Imran

    (Department of Mechanical, Biomedical and Design Engineering, College of Engineering and Physical Sciences, Aston University, Birmingham B4 7ET, UK)

Abstract

Wind is an important renewable energy source. The majority of wind farms in Pakistan are installed in Jhimpir, Sindh Wind Corridor. At this location, downstream turbines encounter upstream turbines’, wake, decreasing power output. To maximize the power output, there is a need to minimize these wakes. In this research, a method is proposed to maximize the power output using a Genetic Algorithm (GA). Hub heights and inter-turbine spacing are considered variables in this method. Two wind farms located at Jhimpir, Sindh, namely, Second and Third Three Gorges Wind Farms (TGWFs), have been analyzed. Three different cases are considered to maximize the power output. In Case 1, thesame hub heights and inter-turbine spacing without wake effects are considered. In Case 2, the same hub heights and inter-turbine spacing with wake effects are considered. In Case 3, variable hub heights and inter-turbine spacing with wake effects are considered. The results revealed that TGWFs, with variable hub heights and inter-turbine spacing, produce more power output. It is also revealed that the increase in power output, in the case of two different hub heights, is greater in comparison to three different hub heights. Eventually, the proposed method may help in the layout optimization of a wind farm.

Suggested Citation

  • Muhammad Bin Ali & Zeshan Ahmad & Saad Alshahrani & Muhammad Rizwan Younis & Irsa Talib & Muhammad Imran, 2022. "A Case Study: Layout Optimization of Three Gorges Wind Farm Pakistan, Using Genetic Algorithm," Sustainability, MDPI, vol. 14(24), pages 1-18, December.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:24:p:16960-:d:1006905
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/24/16960/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/24/16960/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shakoor, Rabia & Hassan, Mohammad Yusri & Raheem, Abdur & Wu, Yuan-Kang, 2016. "Wake effect modeling: A review of wind farm layout optimization using Jensen׳s model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1048-1059.
    2. Mazhar H. Baloch & Safdar A. Abro & Ghulam Sarwar Kaloi & Nayyar H. Mirjat & Sohaib Tahir & M. Haroon Nadeem & Mehr Gul & Zubair A. Memon & Mahendar Kumar, 2017. "A Research on Electricity Generation from Wind Corridors of Pakistan (Two Provinces): A Technical Proposal for Remote Zones," Sustainability, MDPI, vol. 9(9), pages 1-31, September.
    3. Khahro, Shahnawaz Farhan & Tabbassum, Kavita & Mahmood Soomro, Amir & Liao, Xiaozhong & Alvi, Muhammad Bux & Dong, Lei & Manzoor, M. Farhan, 2014. "Techno-economical evaluation of wind energy potential and analysis of power generation from wind at Gharo, Sindh Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 460-474.
    4. Marmidis, Grigorios & Lazarou, Stavros & Pyrgioti, Eleftheria, 2008. "Optimal placement of wind turbines in a wind park using Monte Carlo simulation," Renewable Energy, Elsevier, vol. 33(7), pages 1455-1460.
    5. DuPont, Bryony & Cagan, Jonathan & Moriarty, Patrick, 2016. "An advanced modeling system for optimization of wind farm layout and wind turbine sizing using a multi-level extended pattern search algorithm," Energy, Elsevier, vol. 106(C), pages 802-814.
    6. Chen, K. & Song, M.X. & Zhang, X. & Wang, S.F., 2016. "Wind turbine layout optimization with multiple hub height wind turbines using greedy algorithm," Renewable Energy, Elsevier, vol. 96(PA), pages 676-686.
    7. Grady, S.A. & Hussaini, M.Y. & Abdullah, M.M., 2005. "Placement of wind turbines using genetic algorithms," Renewable Energy, Elsevier, vol. 30(2), pages 259-270.
    8. Syed, Abdul Haseeb & Javed, Adeel & Asim Feroz, Raja M. & Calhoun, Ronald, 2020. "Partial repowering analysis of a wind farm by turbine hub height variation to mitigate neighboring wind farm wake interference using mesoscale simulations," Applied Energy, Elsevier, vol. 268(C).
    9. Zuhaibuddin Bhutto & Sikandar Ali Abbasi & Saeed Zaman Jamali & Salman Masroor & Jalal Shah & Murtaza Hussain Shaikh & Ayaz Hussain, 2022. "Evaluation of Drivers and Barriers of Wind Power Generation in Pakistan. SWOT-Delphi Method," International Journal of Energy Economics and Policy, Econjournals, vol. 12(2), pages 342-348, March.
    10. Kim, Soo-Hyun & Shin, Hyung-Ki & Joo, Young-Chul & Kim, Keon-Hoon, 2015. "A study of the wake effects on the wind characteristics and fatigue loads for the turbines in a wind farm," Renewable Energy, Elsevier, vol. 74(C), pages 536-543.
    11. Wang, Longyan & Cholette, Michael E. & Zhou, Yunkai & Yuan, Jianping & Tan, Andy C.C. & Gu, Yuantong, 2018. "Effectiveness of optimized control strategy and different hub height turbines on a real wind farm optimization," Renewable Energy, Elsevier, vol. 126(C), pages 819-829.
    12. Vasel-Be-Hagh, Ahmadreza & Archer, Cristina L., 2017. "Wind farm hub height optimization," Applied Energy, Elsevier, vol. 195(C), pages 905-921.
    13. Zaman, Shah & Wang, Zilong & Rasool, Samma Faiz & Zaman, Qamar uz & Raza, Hamid, 2022. "Impact of critical success factors and supportive leadership on sustainable success of renewable energy projects: Empirical evidence from Pakistan," Energy Policy, Elsevier, vol. 162(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tao, Siyu & Xu, Qingshan & Feijóo, Andrés & Zheng, Gang & Zhou, Jiemin, 2020. "Nonuniform wind farm layout optimization: A state-of-the-art review," Energy, Elsevier, vol. 209(C).
    2. Azlan, F. & Kurnia, J.C. & Tan, B.T. & Ismadi, M.-Z., 2021. "Review on optimisation methods of wind farm array under three classical wind condition problems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    3. Kyoungboo Yang & Kyungho Cho, 2019. "Simulated Annealing Algorithm for Wind Farm Layout Optimization: A Benchmark Study," Energies, MDPI, vol. 12(23), pages 1-15, November.
    4. Biswas, Partha P. & Suganthan, P.N. & Amaratunga, Gehan A.J., 2018. "Decomposition based multi-objective evolutionary algorithm for windfarm layout optimization," Renewable Energy, Elsevier, vol. 115(C), pages 326-337.
    5. Tao, Siyu & Xu, Qingshan & Feijóo, Andrés & Zheng, Gang & Zhou, Jiemin, 2020. "Wind farm layout optimization with a three-dimensional Gaussian wake model," Renewable Energy, Elsevier, vol. 159(C), pages 553-569.
    6. Sun, Haiying & Yang, Hongxing & Gao, Xiaoxia, 2019. "Investigation into spacing restriction and layout optimization of wind farm with multiple types of wind turbines," Energy, Elsevier, vol. 168(C), pages 637-650.
    7. Masoudi, Seiied Mohsen & Baneshi, Mehdi, 2022. "Layout optimization of a wind farm considering grids of various resolutions, wake effect, and realistic wind speed and wind direction data: A techno-economic assessment," Energy, Elsevier, vol. 244(PB).
    8. Cuadra, L. & Ocampo-Estrella, I. & Alexandre, E. & Salcedo-Sanz, S., 2019. "A study on the impact of easements in the deployment of wind farms near airport facilities," Renewable Energy, Elsevier, vol. 135(C), pages 566-588.
    9. Yang, Kyoungboo & Kwak, Gyeongil & Cho, Kyungho & Huh, Jongchul, 2019. "Wind farm layout optimization for wake effect uniformity," Energy, Elsevier, vol. 183(C), pages 983-995.
    10. Ulku, I. & Alabas-Uslu, C., 2019. "A new mathematical programming approach to wind farm layout problem under multiple wake effects," Renewable Energy, Elsevier, vol. 136(C), pages 1190-1201.
    11. Yin, Peng-Yeng & Wu, Tsai-Hung & Hsu, Ping-Yi, 2017. "Simulation based risk management for multi-objective optimal wind turbine placement using MOEA/D," Energy, Elsevier, vol. 141(C), pages 579-597.
    12. Feng, Ju & Shen, Wen Zhong, 2017. "Design optimization of offshore wind farms with multiple types of wind turbines," Applied Energy, Elsevier, vol. 205(C), pages 1283-1297.
    13. Zergane, Saïd & Smaili, Arezki & Masson, Christian, 2018. "Optimization of wind turbine placement in a wind farm using a new pseudo-random number generation method," Renewable Energy, Elsevier, vol. 125(C), pages 166-171.
    14. Nicolas Kirchner-Bossi & Fernando Porté-Agel, 2018. "Realistic Wind Farm Layout Optimization through Genetic Algorithms Using a Gaussian Wake Model," Energies, MDPI, vol. 11(12), pages 1-26, November.
    15. Hu, Weicheng & Yang, Qingshan & Yuan, Ziting & Yang, Fucheng, 2024. "Wind farm layout optimization in complex terrain based on CFD and IGA-PSO," Energy, Elsevier, vol. 288(C).
    16. Gao, Xiaoxia & Yang, Hongxing & Lu, Lin, 2016. "Optimization of wind turbine layout position in a wind farm using a newly-developed two-dimensional wake model," Applied Energy, Elsevier, vol. 174(C), pages 192-200.
    17. Hegazy Rezk & Ahmed Fathy & Ahmed A. Zaki Diab & Mujahed Al-Dhaifallah, 2019. "The Application of Water Cycle Optimization Algorithm for Optimal Placement of Wind Turbines in Wind Farms," Energies, MDPI, vol. 12(22), pages 1-19, November.
    18. Jamshid Ali Turi & Joanna Rosak-Szyrocka & Maryam Mansoor & Hira Asif & Ahad Nazir & Daniel Balsalobre-Lorente, 2022. "Assessing Wind Energy Projects Potential in Pakistan: Challenges and Way Forward," Energies, MDPI, vol. 15(23), pages 1-21, November.
    19. Xiawei Wu & Weihao Hu & Qi Huang & Cong Chen & Zhe Chen & Frede Blaabjerg, 2019. "Optimized Placement of Onshore Wind Farms Considering Topography," Energies, MDPI, vol. 12(15), pages 1-18, July.
    20. Vasel-Be-Hagh, Ahmadreza & Archer, Cristina L., 2017. "Wind farm hub height optimization," Applied Energy, Elsevier, vol. 195(C), pages 905-921.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:24:p:16960-:d:1006905. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.