IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i15p2944-d253420.html
   My bibliography  Save this article

Optimized Placement of Onshore Wind Farms Considering Topography

Author

Listed:
  • Xiawei Wu

    (School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, No.2006, XiYuan Avenue, Chengdu 611731, China)

  • Weihao Hu

    (School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, No.2006, XiYuan Avenue, Chengdu 611731, China)

  • Qi Huang

    (School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, No.2006, XiYuan Avenue, Chengdu 611731, China)

  • Cong Chen

    (Public Health England/Health Data Insight Community Interest Company, Cambridge CB21 5XE, UK)

  • Zhe Chen

    (Department of Energy Technology, Aalborg University, Pontoppidanstraede 101, DK-9220 Aalborg, Denmark)

  • Frede Blaabjerg

    (Department of Energy Technology, Aalborg University, Pontoppidanstraede 101, DK-9220 Aalborg, Denmark)

Abstract

As the scale of onshore wind farms are increasing, the influence of wake behavior on power production becomes increasingly significant. Wind turbines sittings in onshore wind farms should take terrain into consideration including height change and slope curvature. However, optimized wind turbine (WT) placement for onshore wind farms considering both topographic amplitude and wake interaction is realistic. In this paper, an approach for optimized placement of onshore wind farms considering the topography as well as the wake effect is proposed. Based on minimizing the levelized production cost (LPC), the placement of WTs was optimized considering topography and the effect of this on WTs interactions. The results indicated that the proposed method was effective for finding the optimized layout for uneven onshore wind farms. The optimization method is applicable for optimized placement of onshore wind farms and can be extended to different topographic conditions.

Suggested Citation

  • Xiawei Wu & Weihao Hu & Qi Huang & Cong Chen & Zhe Chen & Frede Blaabjerg, 2019. "Optimized Placement of Onshore Wind Farms Considering Topography," Energies, MDPI, vol. 12(15), pages 1-18, July.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:15:p:2944-:d:253420
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/15/2944/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/15/2944/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marmidis, Grigorios & Lazarou, Stavros & Pyrgioti, Eleftheria, 2008. "Optimal placement of wind turbines in a wind park using Monte Carlo simulation," Renewable Energy, Elsevier, vol. 33(7), pages 1455-1460.
    2. Song, M.X. & Chen, K. & He, Z.Y. & Zhang, X., 2014. "Optimization of wind farm micro-siting for complex terrain using greedy algorithm," Energy, Elsevier, vol. 67(C), pages 454-459.
    3. Grady, S.A. & Hussaini, M.Y. & Abdullah, M.M., 2005. "Placement of wind turbines using genetic algorithms," Renewable Energy, Elsevier, vol. 30(2), pages 259-270.
    4. Flores, P. & Tapia, A. & Tapia, G., 2005. "Application of a control algorithm for wind speed prediction and active power generation," Renewable Energy, Elsevier, vol. 30(4), pages 523-536.
    5. González-Longatt, F. & Wall, P. & Terzija, V., 2012. "Wake effect in wind farm performance: Steady-state and dynamic behavior," Renewable Energy, Elsevier, vol. 39(1), pages 329-338.
    6. Vasel-Be-Hagh, Ahmadreza & Archer, Cristina L., 2017. "Wind farm hub height optimization," Applied Energy, Elsevier, vol. 195(C), pages 905-921.
    7. Hou, Peng & Hu, Weihao & Chen, Cong & Soltani, Mohsen & Chen, Zhe, 2016. "Optimization of offshore wind farm layout in restricted zones," Energy, Elsevier, vol. 113(C), pages 487-496.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel Duda & Václav Uruba & Vitalii Yanovych, 2021. "Wake Width: Discussion of Several Methods How to Estimate It by Using Measured Experimental Data," Energies, MDPI, vol. 14(15), pages 1-19, August.
    2. Florin Onea & Andrés Ruiz & Eugen Rusu, 2020. "An Evaluation of the Wind Energy Resources along the Spanish Continental Nearshore," Energies, MDPI, vol. 13(15), pages 1-23, August.
    3. Waldemar Kuczyński & Katarzyna Wolniewicz & Henryk Charun, 2021. "Analysis of the Wind Turbine Selection for the Given Wind Conditions," Energies, MDPI, vol. 14(22), pages 1-16, November.
    4. Andrés Ruiz & Florin Onea & Eugen Rusu, 2020. "Study Concerning the Expected Dynamics of the Wind Energy Resources in the Iberian Nearshore," Energies, MDPI, vol. 13(18), pages 1-25, September.
    5. Katarzyna Wolniewicz & Adam Zagubień & Mirosław Wesołowski, 2021. "Energy and Acoustic Environmental Effective Approach for a Wind Farm Location," Energies, MDPI, vol. 14(21), pages 1-17, November.
    6. Chakib El Mokhi & Adnane Addaim, 2020. "Optimization of Wind Turbine Interconnections in an Offshore Wind Farm Using Metaheuristic Algorithms," Sustainability, MDPI, vol. 12(14), pages 1-24, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Mengxuan & Chen, Kai & Zhang, Xing & Wang, Jun, 2016. "Optimization of wind turbine micro-siting for reducing the sensitivity of power generation to wind direction," Renewable Energy, Elsevier, vol. 85(C), pages 57-65.
    2. Dhunny, A.Z. & Allam, Z. & Lobine, D. & Lollchund, M.R., 2019. "Sustainable renewable energy planning and wind farming optimization from a biodiversity perspective," Energy, Elsevier, vol. 185(C), pages 1282-1297.
    3. Wu, Xiawei & Hu, Weihao & Huang, Qi & Chen, Cong & Jacobson, Mark Z. & Chen, Zhe, 2020. "Optimizing the layout of onshore wind farms to minimize noise," Applied Energy, Elsevier, vol. 267(C).
    4. Hou, Peng & Hu, Weihao & Soltani, Mohsen & Chen, Cong & Chen, Zhe, 2017. "Combined optimization for offshore wind turbine micro siting," Applied Energy, Elsevier, vol. 189(C), pages 271-282.
    5. Serrano González, Javier & Burgos Payán, Manuel & Santos, Jesús Manuel Riquelme & González-Longatt, Francisco, 2014. "A review and recent developments in the optimal wind-turbine micro-siting problem," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 133-144.
    6. Muhammad Bin Ali & Zeshan Ahmad & Saad Alshahrani & Muhammad Rizwan Younis & Irsa Talib & Muhammad Imran, 2022. "A Case Study: Layout Optimization of Three Gorges Wind Farm Pakistan, Using Genetic Algorithm," Sustainability, MDPI, vol. 14(24), pages 1-18, December.
    7. Nikolaos M. Manousakis & Constantinos S. Psomopoulos & George Ch. Ioannidis & Stavros D. Kaminaris, 2021. "A Binary Integer Programming Method for Optimal Wind Turbines Allocation," Clean Technol., MDPI, vol. 3(2), pages 1-12, June.
    8. Cuadra, L. & Ocampo-Estrella, I. & Alexandre, E. & Salcedo-Sanz, S., 2019. "A study on the impact of easements in the deployment of wind farms near airport facilities," Renewable Energy, Elsevier, vol. 135(C), pages 566-588.
    9. Azlan, F. & Kurnia, J.C. & Tan, B.T. & Ismadi, M.-Z., 2021. "Review on optimisation methods of wind farm array under three classical wind condition problems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    10. Kyoungboo Yang & Kyungho Cho, 2019. "Simulated Annealing Algorithm for Wind Farm Layout Optimization: A Benchmark Study," Energies, MDPI, vol. 12(23), pages 1-15, November.
    11. Yang, Kyoungboo & Kwak, Gyeongil & Cho, Kyungho & Huh, Jongchul, 2019. "Wind farm layout optimization for wake effect uniformity," Energy, Elsevier, vol. 183(C), pages 983-995.
    12. Dhoot, Aditya & Antonini, Enrico G.A. & Romero, David A. & Amon, Cristina H., 2021. "Optimizing wind farms layouts for maximum energy production using probabilistic inference: Benchmarking reveals superior computational efficiency and scalability," Energy, Elsevier, vol. 223(C).
    13. Cao, Lichao & Ge, Mingwei & Gao, Xiaoxia & Du, Bowen & Li, Baoliang & Huang, Zhi & Liu, Yongqian, 2022. "Wind farm layout optimization to minimize the wake induced turbulence effect on wind turbines," Applied Energy, Elsevier, vol. 323(C).
    14. Song, Mengxuan & Wen, Yi & Duan, Bin & Wang, Jun & Gong, Qi, 2017. "Micro-siting optimization of a wind farm built in multiple phases," Energy, Elsevier, vol. 137(C), pages 95-103.
    15. Radünz, William Corrêa & Mattuella, Jussara M. Leite & Petry, Adriane Prisco, 2020. "Wind resource mapping and energy estimation in complex terrain: A framework based on field observations and computational fluid dynamics," Renewable Energy, Elsevier, vol. 152(C), pages 494-515.
    16. Yin, Peng-Yeng & Wu, Tsai-Hung & Hsu, Ping-Yi, 2017. "Simulation based risk management for multi-objective optimal wind turbine placement using MOEA/D," Energy, Elsevier, vol. 141(C), pages 579-597.
    17. Shakoor, Rabia & Hassan, Mohammad Yusri & Raheem, Abdur & Rasheed, Nadia, 2016. "Wind farm layout optimization using area dimensions and definite point selection techniques," Renewable Energy, Elsevier, vol. 88(C), pages 154-163.
    18. Wu, Chutian & Yang, Xiaolei & Zhu, Yaxin, 2021. "On the design of potential turbine positions for physics-informed optimization of wind farm layout," Renewable Energy, Elsevier, vol. 164(C), pages 1108-1120.
    19. Feng, Ju & Shen, Wen Zhong, 2015. "Solving the wind farm layout optimization problem using random search algorithm," Renewable Energy, Elsevier, vol. 78(C), pages 182-192.
    20. Park, Jinkyoo & Law, Kincho H., 2015. "Layout optimization for maximizing wind farm power production using sequential convex programming," Applied Energy, Elsevier, vol. 151(C), pages 320-334.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:15:p:2944-:d:253420. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.