IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i24p16694-d1002062.html
   My bibliography  Save this article

Predicting Model for Air Transport Demand under Uncertainties Based on Particle Filter

Author

Listed:
  • Bin Chen

    (Civil Aviation College, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
    China Civil Aviation Engineering Consulting Co., Ltd., Beijing 100621, China)

  • Jin Wu

    (Civil Aviation College, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China)

Abstract

The outbreak of the COVID-19 has brought about huge economic loss and civil aviation industries all over the world have suffered severe damage. An effective method is urgently needed to accurately predict air-transport demand under the influences of such accidental factors. This paper proposes a novel predicting framework for the air-transport demand considering the uncertainties caused by accidental factors including regional wars, climatic anomalies, and virus outbreaks. By employing a seasonal autoregressive integrated moving average (sARIMA) model as the basic model, a particle filter (PF)-based sARIMA-pf model is proposed. The applicability of adapting the high-order sARIMA model as the state transition model in a PF framework is shown and proven to be effective. The proposed method has the advantage of coping with short-term prediction with known uncertainties. By conducting case studies on the prediction of air passenger traffic volume in China, the sARIMA-pf model showed better performance than the sARIMA model and improved the accuracy by 49.29% and 44.96% under the conventional and pandemic scenarios, respectively, when using the root mean square error (RMSE) as the indicator.

Suggested Citation

  • Bin Chen & Jin Wu, 2022. "Predicting Model for Air Transport Demand under Uncertainties Based on Particle Filter," Sustainability, MDPI, vol. 14(24), pages 1-13, December.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:24:p:16694-:d:1002062
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/24/16694/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/24/16694/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Meng, Huixing & Geng, Mengyao & Xing, Jinduo & Zio, Enrico, 2022. "A hybrid method for prognostics of lithium-ion batteries capacity considering regeneration phenomena," Energy, Elsevier, vol. 261(PB).
    2. Zio, Enrico & Peloni, Giovanni, 2011. "Particle filtering prognostic estimation of the remaining useful life of nonlinear components," Reliability Engineering and System Safety, Elsevier, vol. 96(3), pages 403-409.
    3. Agnieszka Barczak & Izabela Dembińska & Dorota Rozmus & Katarzyna Szopik-Depczyńska, 2022. "The Impact of COVID-19 Pandemic on Air Transport Passenger Markets-Implications for Selected EU Airports Based on Time Series Models Analysis," Sustainability, MDPI, vol. 14(7), pages 1-19, April.
    4. Jin, Feng & Li, Yongwu & Sun, Shaolong & Li, Hongtao, 2020. "Forecasting air passenger demand with a new hybrid ensemble approach," Journal of Air Transport Management, Elsevier, vol. 83(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Yang & Baraldi, Piero & Di Maio, Francesco & Zio, Enrico, 2015. "A particle filtering and kernel smoothing-based approach for new design component prognostics," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 19-31.
    2. Chen, Zhelun & O’Neill, Zheng & Wen, Jin & Pradhan, Ojas & Yang, Tao & Lu, Xing & Lin, Guanjing & Miyata, Shohei & Lee, Seungjae & Shen, Chou & Chiosa, Roberto & Piscitelli, Marco Savino & Capozzoli, , 2023. "A review of data-driven fault detection and diagnostics for building HVAC systems," Applied Energy, Elsevier, vol. 339(C).
    3. Collins Opoku Antwi & Jun Ren & Wenyu Zhang & Wilberforce Owusu-Ansah & Michael Osei Aboagye & Emmanuel Affum-Osei & Richard Adu Agyapong, 2022. "“I Am Here to Fly, but Better Get the Environment Right!” Passenger Response to Airport Servicescape," Sustainability, MDPI, vol. 14(16), pages 1-24, August.
    4. Xiangang Cao & Pengfei Li & Song Ming, 2021. "Remaining Useful Life Prediction-Based Maintenance Decision Model for Stochastic Deterioration Equipment under Data-Driven," Sustainability, MDPI, vol. 13(15), pages 1-19, July.
    5. Xuliang Tang & Heng Wan & Weiwen Wang & Mengxu Gu & Linfeng Wang & Linfeng Gan, 2023. "Lithium-Ion Battery Remaining Useful Life Prediction Based on Hybrid Model," Sustainability, MDPI, vol. 15(7), pages 1-18, April.
    6. Liu, Xingheng & Matias, José & Jäschke, Johannes & Vatn, Jørn, 2022. "Gibbs sampler for noisy Transformed Gamma process: Inference and remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    7. Zhang, Jian-Xun & Si, Xiao-Sheng & Du, Dang-Bo & Hu, Chang-Hua & Hu, Chen, 2020. "A novel iterative approach of lifetime estimation for standby systems with deteriorating spare parts," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    8. Pradeep Kundu & Makarand S.Kulkarni & Ashish K.Darpe, 2023. "A hybrid prognosis approach for life prediction of gears subjected to progressive pitting failure mode," Journal of Intelligent Manufacturing, Springer, vol. 34(3), pages 1325-1346, March.
    9. Wang, Sen & Gao, Yi, 2021. "A literature review and citation analyses of air travel demand studies published between 2010 and 2020," Journal of Air Transport Management, Elsevier, vol. 97(C).
    10. Le Son, Khanh & Fouladirad, Mitra & Barros, Anne & Levrat, Eric & Iung, Benoît, 2013. "Remaining useful life estimation based on stochastic deterioration models: A comparative study," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 165-175.
    11. Fang, Xiaolei & Zhou, Rensheng & Gebraeel, Nagi, 2015. "An adaptive functional regression-based prognostic model for applications with missing data," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 266-274.
    12. Yawei Hu & Shujie Liu & Huitian Lu & Hongchao Zhang, 2018. "Online remaining useful life prognostics using an integrated particle filter," Journal of Risk and Reliability, , vol. 232(6), pages 587-597, December.
    13. Fan, Jiajie & Yung, Kam-Chuen & Pecht, Michael, 2014. "Prognostics of lumen maintenance for High power white light emitting diodes using a nonlinear filter-based approach," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 63-72.
    14. Mishra, Madhav & Martinsson, Jesper & Rantatalo, Matti & Goebel, Kai, 2018. "Bayesian hierarchical model-based prognostics for lithium-ion batteries," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 25-35.
    15. Li, Li & Ling, Lei & Xie, Yajun & Zhou, Wencai & Wang, Tianbo & Zhang, Lanchun & Bei, Shaoyi & Zheng, Keqing & Xu, Qiang, 2023. "Comparative study of thermal management systems with different cooling structures for cylindrical battery modules: Side-cooling vs. terminal-cooling," Energy, Elsevier, vol. 274(C).
    16. Hairui Wang & Xin Ye & Yuanbo Li & Guifu Zhu, 2023. "Remaining Useful Life Prediction for Lithium-Ion Batteries Based on Improved Mode Decomposition and Time Series," Sustainability, MDPI, vol. 15(12), pages 1-23, June.
    17. Wang, Zhanwei & Song, Woon-Kyung, 2020. "Sustainable airport development with performance evaluation forecasts: A case study of 12 Asian airports," Journal of Air Transport Management, Elsevier, vol. 89(C).
    18. Yin, Xiuxian & He, Wei & Cao, You & Ma, Ning & Zhou, Guohui & Li, Hongyu, 2024. "A new health state assessment method based on interpretable belief rule base with bimetric balance," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    19. Prakash, Om & Samantaray, Arun Kumar, 2021. "Prognosis of Dynamical System Components with Varying Degradation Patterns using model–data–fusion," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    20. Wei Teng & Xiaolong Zhang & Yibing Liu & Andrew Kusiak & Zhiyong Ma, 2016. "Prognosis of the Remaining Useful Life of Bearings in a Wind Turbine Gearbox," Energies, MDPI, vol. 10(1), pages 1-16, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:24:p:16694-:d:1002062. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.