IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i24p16337-d995936.html
   My bibliography  Save this article

Analysis of Optimal Operation of Multi-Energy Alliance Based on Multi-Scale Dynamic Cost Equilibrium Allocation

Author

Listed:
  • Yong Cui

    (College of Management, Anhui Science and Technology University, Bengbu 233030, China)

  • Anselme Andriamahery

    (School of Economics and Management, Hubei Polytechnic University, Huangshi 435003, China)

  • Lie Ao

    (School of Economics and Management, Hubei Polytechnic University, Huangshi 435003, China)

  • Jian Zheng

    (College of Electrical Engineering and New Energy, China Three Gorges University, Yichang 443002, China)

  • Zhiqiang Huo

    (Department of Population Health Sciences, King’s College London (KCL), London WC2R 2LS, UK)

Abstract

This paper discusses the power generation characteristics between new energy and traditional energy. This paper uses different energy alliance operation modes for a power system led by new energy power generation. The peak-valley power imbalance issue for real-time load is mitigated through coordinated and optimized energy supply by wind, photovoltaic, hydro (hydropower station with pumped storage function as an example.), and thermal power, aiming to peak load shifting for the system. Moreover, from the perspective of optimal allocation of resources within the alliance and multi-scale cost equilibrium optimization of each subject’s power generation combination, the marginal contribution of different agents is considered. A multi-energy alliance operation optimization decision-making method is designed based on the Shapley value method. This paper studies the multi-scale combination cost allocation of each subject and the distribution law of dynamic optimization of its output ratio. The relationship between the power generation ratio and the cost allocation for each subject. Moreover, the discrete coefficient equation of cost equilibrium values is constructed to verify the equilibrium distribution effect of the Shapley cost allocation model. The case analysis shows that the 46th combination scheme for the multi-energy alliance can realize the main output of wind power and photovoltaic new energy under the premise of the relatively stable alliance corresponding output ratio of 0.2 and 0.4, respectively. The research proves that the operation mechanism of the multi-energy alliance plays a supporting role in the optimal operation of the new energy power system. Meanwhile, this method can be used as a basis for the power generation planning, cost control, and power generation combination optimization decisions on each entity within the alliance.

Suggested Citation

  • Yong Cui & Anselme Andriamahery & Lie Ao & Jian Zheng & Zhiqiang Huo, 2022. "Analysis of Optimal Operation of Multi-Energy Alliance Based on Multi-Scale Dynamic Cost Equilibrium Allocation," Sustainability, MDPI, vol. 14(24), pages 1-19, December.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:24:p:16337-:d:995936
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/24/16337/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/24/16337/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mbungu, Nsilulu T. & Bansal, Ramesh C. & Naidoo, Raj M. & Bettayeb, Maamar & Siti, Mukwanga W. & Bipath, Minnesh, 2020. "A dynamic energy management system using smart metering," Applied Energy, Elsevier, vol. 280(C).
    2. Cui, Qiong & Ma, Peipei & Huang, Lei & Shu, Jie & Luv, Jie & Lu, Lin, 2020. "Effect of device models on the multiobjective optimal operation of CCHP microgrids considering shiftable loads," Applied Energy, Elsevier, vol. 275(C).
    3. Wang, Xuebin & Chang, Jianxia & Meng, Xuejiao & Wang, Yimin, 2018. "Short-term hydro-thermal-wind-photovoltaic complementary operation of interconnected power systems," Applied Energy, Elsevier, vol. 229(C), pages 945-962.
    4. Wang, Yongli & Liu, Zhen & Cai, Chengcong & Xue, Lu & Ma, Yang & Shen, Hekun & Chen, Xin & Liu, Lin, 2022. "Research on the optimization method of integrated energy system operation with multi-subject game," Energy, Elsevier, vol. 245(C).
    5. Ding, Ziyu & Wen, Xin & Tan, Qiaofeng & Yang, Tiantian & Fang, Guohua & Lei, Xiaohui & Zhang, Yu & Wang, Hao, 2021. "A forecast-driven decision-making model for long-term operation of a hydro-wind-photovoltaic hybrid system," Applied Energy, Elsevier, vol. 291(C).
    6. Wei, Chun & Shen, Zhuzheng & Xiao, Dongliang & Wang, Licheng & Bai, Xiaoqing & Chen, Haoyong, 2021. "An optimal scheduling strategy for peer-to-peer trading in interconnected microgrids based on RO and Nash bargaining," Applied Energy, Elsevier, vol. 295(C).
    7. Hua, Weiqi & Jiang, Jing & Sun, Hongjian & Teng, Fei & Strbac, Goran, 2022. "Consumer-centric decarbonization framework using Stackelberg game and Blockchain," Applied Energy, Elsevier, vol. 309(C).
    8. Yang, Dongfeng & Jiang, Chao & Cai, Guowei & Yang, Deyou & Liu, Xiaojun, 2020. "Interval method based optimal planning of multi-energy microgrid with uncertain renewable generation and demand," Applied Energy, Elsevier, vol. 277(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Han, Fengwu & Zeng, Jianfeng & Lin, Junjie & Zhao, Yunlong & Gao, Chong, 2023. "A stochastic hierarchical optimization and revenue allocation approach for multi-regional integrated energy systems based on cooperative games," Applied Energy, Elsevier, vol. 350(C).
    2. Gong, Yu & Liu, Pan & Ming, Bo & Xu, Weifeng & Huang, Kangdi & Li, Xiao, 2021. "Deriving pack rules for hydro–photovoltaic hybrid power systems considering diminishing marginal benefit of energy," Applied Energy, Elsevier, vol. 304(C).
    3. Lei, Kaixuan & Chang, Jianxia & Wang, Xuebin & Guo, Aijun & Wang, Yimin & Ren, Chengqing, 2023. "Peak shaving and short-term economic operation of hydro-wind-PV hybrid system considering the uncertainty of wind and PV power," Renewable Energy, Elsevier, vol. 215(C).
    4. Wang, Zhenni & Wen, Xin & Tan, Qiaofeng & Fang, Guohua & Lei, Xiaohui & Wang, Hao & Yan, Jinyue, 2021. "Potential assessment of large-scale hydro-photovoltaic-wind hybrid systems on a global scale," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    5. Wang, Yanling & Wen, Xin & Su, Huaying & Qin, Jisen & Kong, Linghui, 2023. "Real-time dispatch of hydro-photovoltaic (PV) hybrid system based on dynamic load reserve capacity," Energy, Elsevier, vol. 285(C).
    6. Chaoyang Chen & Hualing Liu & Yong Xiao & Fagen Zhu & Li Ding & Fuwen Yang, 2022. "Power Generation Scheduling for a Hydro-Wind-Solar Hybrid System: A Systematic Survey and Prospect," Energies, MDPI, vol. 15(22), pages 1-31, November.
    7. Feng, Zhong-kai & Niu, Wen-jing & Wang, Wen-chuan & Zhou, Jian-zhong & Cheng, Chun-tian, 2019. "A mixed integer linear programming model for unit commitment of thermal plants with peak shaving operation aspect in regional power grid lack of flexible hydropower energy," Energy, Elsevier, vol. 175(C), pages 618-629.
    8. Sulman Shahzad & Muhammad Abbas Abbasi & Hassan Ali & Muhammad Iqbal & Rania Munir & Heybet Kilic, 2023. "Possibilities, Challenges, and Future Opportunities of Microgrids: A Review," Sustainability, MDPI, vol. 15(8), pages 1-28, April.
    9. Liu, Hailiang & Brown, Tom & Andresen, Gorm Bruun & Schlachtberger, David P. & Greiner, Martin, 2019. "The role of hydro power, storage and transmission in the decarbonization of the Chinese power system," Applied Energy, Elsevier, vol. 239(C), pages 1308-1321.
    10. Abdul K Hamid & Nsilulu T Mbungu & A. Elnady & Ramesh C Bansal & Ali A Ismail & Mohammad A AlShabi, 2023. "A systematic review of grid-connected photovoltaic and photovoltaic/thermal systems: Benefits, challenges and mitigation," Energy & Environment, , vol. 34(7), pages 2775-2814, November.
    11. Meng Li & Jiqiang Liu & Yeping Yang, 2023. "Financial Data Quality Evaluation Method Based on Multiple Linear Regression," Future Internet, MDPI, vol. 15(10), pages 1-15, October.
    12. Busiswe Skosana & Mukwanga W. Siti & Nsilulu T. Mbungu & Sonu Kumar & Willy Mulumba, 2023. "An Evaluation of Potential Strategies in Renewable Energy Systems and Their Importance for South Africa—A Review," Energies, MDPI, vol. 16(22), pages 1-27, November.
    13. Jayachandran, M. & Rao, K. Prasada & Gatla, Ranjith Kumar & Kalaivani, C. & Kalaiarasy, C. & Logasabarirajan, C., 2022. "Operational concerns and solutions in smart electricity distribution systems," Utilities Policy, Elsevier, vol. 74(C).
    14. Wang, Jin & Zhao, Zhipeng & Zhou, Jinglin & Cheng, Chuntian & Su, Huaying, 2024. "Developing operating rules for a hydro–wind–solar hybrid system considering peak-shaving demands," Applied Energy, Elsevier, vol. 360(C).
    15. Benavides (Dir. proy.), Juan & Cadena, Ximena & Delgado-Rojas, Martha Elena & García, Helena & García, María Claudia & Medellín, Juan Camilo, 2021. "Asistencia técnica para la implementación del Proyecto de Acción de los NDC en Colombia (UNEP): Entregable 2.2. Informe que contiene los procesos que permitirían la destinación y gestión efectiva de f," Informes de Investigación 21036, Fedesarrollo.
    16. Cheng, Qian & Liu, Pan & Xia, Qian & Cheng, Lei & Ming, Bo & Zhang, Wei & Xu, Weifeng & Zheng, Yalian & Han, Dongyang & Xia, Jun, 2023. "An analytical method to evaluate curtailment of hydro–photovoltaic hybrid energy systems and its implication under climate change," Energy, Elsevier, vol. 278(C).
    17. Jia, Mengshuo & Huang, Shaowei & Wang, Zhiwen & Shen, Chen, 2021. "Privacy-preserving distributed parameter estimation for probability distribution of wind power forecast error," Renewable Energy, Elsevier, vol. 163(C), pages 1318-1332.
    18. Lv, Zhihan & Cheng, Chen & Lv, Haibin, 2023. "Digital twins for secure thermal energy storage in building," Applied Energy, Elsevier, vol. 338(C).
    19. Milosz Krysik & Krzysztof Piotrowski & Krzysztof Turchan, 2022. "Testing Smart Grid Scenarios with Small Volume Testbed and Flexible Power Inverter," Energies, MDPI, vol. 15(2), pages 1-20, January.
    20. Han, Zhixin & Fang, Debin & Yang, Peiwen & Lei, Leyao, 2023. "Cooperative mechanisms for multi-energy complementarity in the electricity spot market," Energy Economics, Elsevier, vol. 127(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:24:p:16337-:d:995936. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.