IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i23p16016-d989341.html
   My bibliography  Save this article

Multicriteria Decision Making and Its Application in Geothermal Power Project

Author

Listed:
  • Thai Hoang Tuyet Nhi

    (Department of Industrial Systems and Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 807618, Taiwan)

  • Chia-Nan Wang

    (Department of Industrial Systems and Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 807618, Taiwan)

  • Nguyen Van Thanh

    (Faculty of Commerce, Van Lang University, Ho Chi Minh City 70000, Vietnam)

Abstract

The International Energy Agency (IEA) assesses Vietnam as the second largest electricity user in Southeast Asia. The energy consumption growth rate in the region is one of the fastest in the world, with demand growing at a steady 6% per year for the past 20 years. Within the context that domestic fossil fuel production cannot keep up with demand and climate change is occurring, to avoid depending on imported energy to operate the power system, the Government of Vietnam has turned to developing renewable energy. The potential for developing geothermal energy in Vietnam is promising with more than 200 sources of water around 40 to 100 °C, which is sufficient for the development of geothermal energy projects. Today, a method to conserve natural resources and invest in renewable energy is provided by the government by controlling the importation of gas and coal while investing in building geothermal power plants. One of the hardest problems, however, is determining a suitable place to construct a geothermal power plant (GPP). For this main reason, in the hope of solving this problem, the author has proposed a decision-making model that utilizes a fuzzy set under multi-criteria conditions. It uses two methods, Fuzzy Analytic Hierarchy Process (FAHP) followed by Weighted Aggregated Sum Product Assessment (WASPAS), for a GPP site selection decision. The FAHP model is first used to determine the weights of each criterion and sub-criterion. Then, the ranking of each alternative is calculated by the WASPAS model. A final alternative is determined to be the best solution based on calculations from the methods above for identifying suitable locations for a GPP. This research has contributed a method of using a fuzzy multi-criteria decision-making model for determining a suitable location selection. This contribution also shows a development of flexibility towards decision making for other renewable energy projects worldwide.

Suggested Citation

  • Thai Hoang Tuyet Nhi & Chia-Nan Wang & Nguyen Van Thanh, 2022. "Multicriteria Decision Making and Its Application in Geothermal Power Project," Sustainability, MDPI, vol. 14(23), pages 1-14, November.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:23:p:16016-:d:989341
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/23/16016/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/23/16016/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Karwan Alkaradaghi & Salahalddin S. Ali & Nadhir Al-Ansari & Jan Laue & Ali Chabuk, 2019. "Landfill Site Selection Using MCDM Methods and GIS in the Sulaimaniyah Governorate, Iraq," Sustainability, MDPI, vol. 11(17), pages 1-22, August.
    2. Chia-Nan Wang & Van Thanh Nguyen & Hoang Tuyet Nhi Thai & Duy Hung Duong, 2018. "Multi-Criteria Decision Making (MCDM) Approaches for Solar Power Plant Location Selection in Viet Nam," Energies, MDPI, vol. 11(6), pages 1-27, June.
    3. Huiru Zhao & Sen Guo, 2014. "Selecting Green Supplier of Thermal Power Equipment by Using a Hybrid MCDM Method for Sustainability," Sustainability, MDPI, vol. 6(1), pages 1-19, January.
    4. Satya Widya Yudha & Benny Tjahjono & Philip Longhurst, 2022. "Unearthing the Dynamics of Indonesia’s Geothermal Energy Development," Energies, MDPI, vol. 15(14), pages 1-18, July.
    5. Shortall, Ruth & Davidsdottir, Brynhildur & Axelsson, Guðni, 2015. "Geothermal energy for sustainable development: A review of sustainability impacts and assessment frameworks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 391-406.
    6. Yaser Tahmasebi Birgani & Farhad Yazdandoost, 2018. "An Integrated Framework to Evaluate Resilient-Sustainable Urban Drainage Management Plans Using a Combined-adaptive MCDM Technique," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(8), pages 2817-2835, June.
    7. T. Prabhuram & M. Rajmohan & Youchao Tan & R. Robert Johnson, 2020. "Performance evaluation of Omni channel distribution network configurations using multi criteria decision making techniques," Annals of Operations Research, Springer, vol. 288(1), pages 435-456, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohit Jain & Gunjan Soni & Deepak Verma & Rajendra Baraiya & Bharti Ramtiyal, 2023. "Selection of Technology Acceptance Model for Adoption of Industry 4.0 Technologies in Agri-Fresh Supply Chain," Sustainability, MDPI, vol. 15(6), pages 1-20, March.
    2. Herve Tevenim Mewenemesse & Qiang Yan & Prince Foli Acouetey, 2023. "Policy Analysis of Low-Carbon Energy Transition in Senegal Using a Multi-Criteria Decision Approach Based on Principal Component Analysis," Sustainability, MDPI, vol. 15(5), pages 1-23, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nguyen Van Thanh & Nguyen Thi Kim Lan, 2022. "Solar Energy Deployment for the Sustainable Future of Vietnam: Hybrid SWOC-FAHP-WASPAS Analysis," Energies, MDPI, vol. 15(8), pages 1-11, April.
    2. Li, Shunxi & Su, Bowen & St-Pierre, David L. & Sui, Pang-Chieh & Zhang, Guofang & Xiao, Jinsheng, 2017. "Decision-making of compressed natural gas station siting for public transportation: Integration of multi-objective optimization, fuzzy evaluating, and radar charting," Energy, Elsevier, vol. 140(P1), pages 11-17.
    3. Pedro Ponce & Citlaly Pérez & Aminah Robinson Fayek & Arturo Molina, 2022. "Solar Energy Implementation in Manufacturing Industry Using Multi-Criteria Decision-Making Fuzzy TOPSIS and S4 Framework," Energies, MDPI, vol. 15(23), pages 1-19, November.
    4. Pin Li & Jinsuo Zhang, 2019. "Is China’s Energy Supply Sustainable? New Research Model Based on the Exponential Smoothing and GM(1,1) Methods," Energies, MDPI, vol. 12(2), pages 1-30, January.
    5. Bin Xue & Bingsheng Liu & Tao Liang & Dong Zhao & Tao Wang & Xingbin Chen, 2022. "A heterogeneous decision criteria system evaluating sustainable infrastructure development: From the lens of multidisciplinary stakeholder engagement," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(4), pages 556-579, August.
    6. Behroozeh, Samira & Hayati, Dariush & Karami, Ezatollah, 2022. "Determining and validating criteria to measure energy consumption sustainability in agricultural greenhouses," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
    7. Hosseini Dehshiri, Seyyed Jalaladdin & Amiri, Maghsoud, 2023. "Evaluating the risks of the internet of things in renewable energy systems using a hybrid fuzzy decision approach," Energy, Elsevier, vol. 285(C).
    8. Tang, F. & Lahoori, M. & Nowamooz, H. & Rosin-Paumier, S. & Masrouri, F., 2021. "A numerical study into effects of soil compaction and heat storage on thermal performance of a Horizontal Ground Heat Exchanger," Renewable Energy, Elsevier, vol. 172(C), pages 740-752.
    9. Hou, Yali & Wang, Qunwei & Tan, Tao, 2023. "An ensemble learning framework for rooftop photovoltaic project site selection," Energy, Elsevier, vol. 285(C).
    10. Sheoran Savita Kumari & Parmar Vinti, 2020. "Identification of Alternative Landfill Site Using QGIS in a Densely Populated Metropolitan Area," Quaestiones Geographicae, Sciendo, vol. 39(3), pages 47-56, September.
    11. Pratibha Rani & Arunodaya Raj Mishra & Abbas Mardani & Fausto Cavallaro & Dalia Štreimikienė & Syed Abdul Rehman Khan, 2020. "Pythagorean Fuzzy SWARA–VIKOR Framework for Performance Evaluation of Solar Panel Selection," Sustainability, MDPI, vol. 12(10), pages 1-18, May.
    12. Fengchang Jiang & Haiyan Xie & Oliver Ellen, 2018. "Hybrid Energy System with Optimized Storage for Improvement of Sustainability in a Small Town," Sustainability, MDPI, vol. 10(6), pages 1-16, June.
    13. Huiru Zhao & Nana Li, 2016. "Performance Evaluation for Sustainability of Strong Smart Grid by Using Stochastic AHP and Fuzzy TOPSIS Methods," Sustainability, MDPI, vol. 8(2), pages 1-22, January.
    14. Ruchi Mishra & Rajesh Kr Singh & Venkatesh Mani, 2023. "A hybrid multi criteria decision-making framework to facilitate omnichannel adoption in logistics: an empirical case study," Annals of Operations Research, Springer, vol. 326(2), pages 685-719, July.
    15. Aarthi Aishwarya Devendran & Brijesh Mainali & Dilip Khatiwada & Farzin Golzar & Krushna Mahapatra & Camila H. Toigo, 2023. "Optimization of Municipal Waste Streams in Achieving Urban Circularity in the City of Curitiba, Brazil," Sustainability, MDPI, vol. 15(4), pages 1-18, February.
    16. Milad Kolagar & Seyed Mohammad Hassan Hosseini & Ramin Felegari & Parviz Fattahi, 2020. "Policy-making for renewable energy sources in search of sustainable development: a hybrid DEA-FBWM approach," Environment Systems and Decisions, Springer, vol. 40(4), pages 485-509, December.
    17. Zhen-Song Chen & Sheng Wu & Kannan Govindan & Xian-Jia Wang & Kwai-Sang Chin & Luis Martíınez, 2022. "Optimal pricing decision in a multi-channel supply chain with a revenue-sharing contract," Annals of Operations Research, Springer, vol. 318(1), pages 67-102, November.
    18. Yongzheng Zhang & Chunming Ye & Xiuli Geng, 2022. "A Hesitant Fuzzy Method for Evaluating Risky Cold Chain Suppliers Based on an Improved TODIM," Sustainability, MDPI, vol. 14(16), pages 1-23, August.
    19. Sudipa Choudhury & Apu Kumar Saha & Mrinmoy Majumder, 2020. "Optimal location selection for installation of surface water treatment plant by Gini coefficient-based analytical hierarchy process," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(5), pages 4073-4099, June.
    20. Maha Bennani & Fouad Jawab & Yasmina Hani & Abderrahman ElMhamedi & Driss Amegouz, 2022. "A Hybrid MCDM for the Location of Urban Distribution Centers under Uncertainty: A Case Study of Casablanca, Morocco," Sustainability, MDPI, vol. 14(15), pages 1-17, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:23:p:16016-:d:989341. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.