IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v103y2016icp261-270.html
   My bibliography  Save this article

Energy performance of different silicon photovoltaic technologies under hot and harsh climate

Author

Listed:
  • Tossa, Alain K.
  • Soro, Y.M.
  • Thiaw, L.
  • Azoumah, Y.
  • Sicot, Lionel
  • Yamegueu, D.
  • Lishou, Claude
  • Coulibaly, Y.
  • Razongles, Guillaume

Abstract

This paper presents a performance comparison study performed on four photovoltaic modules. Three silicon technologies are concerned: one monocrystalline module, two polycrystalline modules and one module of tandem structure (amorphous/microcrystalline) also known as micromorph module. The modules I–V data and meteorological data have been measured during one year using an outdoor monitoring test facility named “IV bench”. This set up is installed at Ouagadougou (Latitude 12.45° North, Longitude 1.56° West) in Sudano Sahelian climate. The actual maximum power, the average performance ratios, the series resistances and the maximum power temperature coefficient of tested modules are determined from the outdoor measurements and used for comparison study. The power of all the modules has been stabilized in outdoor conditions before the performance analysis. The results show that the micromorph module presents the best performance on the selected site, with an average performance ratio of 92%. The monocrystalline and polycrystalline modules from the same manufacturer, have both an average performance ratio of 84%. The second polycrystalline module from another manufacturer, strangely presents the lowest average performance ratio (80%) due to both its large series resistance and the high maximum power temperature coefficient in operating conditions.

Suggested Citation

  • Tossa, Alain K. & Soro, Y.M. & Thiaw, L. & Azoumah, Y. & Sicot, Lionel & Yamegueu, D. & Lishou, Claude & Coulibaly, Y. & Razongles, Guillaume, 2016. "Energy performance of different silicon photovoltaic technologies under hot and harsh climate," Energy, Elsevier, vol. 103(C), pages 261-270.
  • Handle: RePEc:eee:energy:v:103:y:2016:i:c:p:261-270
    DOI: 10.1016/j.energy.2016.02.133
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216301955
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.02.133?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fabian Zuñiga-Cortes & Juan D. Garcia-Racines & Eduardo Caicedo-Bravo & Hernan Moncada-Vega, 2023. "Minimization of Economic Losses in Photovoltaic System Cleaning Schedules Based on a Novel Methodological Framework for Performance Ratio Forecast and Cost Analysis," Energies, MDPI, vol. 16(16), pages 1-18, August.
    2. Hasan, Ahmed & Sarwar, Jawad & Shah, Ali Hasan, 2018. "Concentrated photovoltaic: A review of thermal aspects, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 835-852.
    3. Zhao, Bin & Hu, Mingke & Ao, Xianze & Chen, Nuo & Xuan, Qingdong & Su, Yuehong & Pei, Gang, 2019. "A novel strategy for a building-integrated diurnal photovoltaic and all-day radiative cooling system," Energy, Elsevier, vol. 183(C), pages 892-900.
    4. Salameh, Tareq & Tawalbeh, Muhammad & Juaidi, Adel & Abdallah, Ramez & Hamid, Abdul-Kadir, 2021. "A novel three-dimensional numerical model for PV/T water system in hot climate region," Renewable Energy, Elsevier, vol. 164(C), pages 1320-1333.
    5. Chikh, Madjid & Berkane, Smain & Mahrane, Achour & Sellami, Rabah & Yassaa, Noureddine, 2021. "Performance assessment of a 400 kWp multi- technology photovoltaic grid-connected pilot plant in arid region of Algeria," Renewable Energy, Elsevier, vol. 172(C), pages 488-501.
    6. Kumar, Manish & Kumar, Arun, 2017. "Performance assessment and degradation analysis of solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 554-587.
    7. Silvestre, Santiago & Tahri, Ali & Tahri, Fatima & Benlebna, Soumiya & Chouder, Aissa, 2018. "Evaluation of the performance and degradation of crystalline silicon-based photovoltaic modules in the Saharan environment," Energy, Elsevier, vol. 152(C), pages 57-63.
    8. Zia R. Tahir & Ammara Kanwal & Muhammad Asim & M. Bilal & Muhammad Abdullah & Sabeena Saleem & M. A. Mujtaba & Ibham Veza & Mohamed Mousa & M. A. Kalam, 2022. "Effect of Temperature and Wind Speed on Efficiency of Five Photovoltaic Module Technologies for Different Climatic Zones," Sustainability, MDPI, vol. 14(23), pages 1-32, November.
    9. Xuesong Zhou & Jiayao Wang & Youjie Ma, 2020. "Linear Active Disturbance Rejection Control of Grid-Connected Photovoltaic Inverter Based on Deviation Control Principle," Energies, MDPI, vol. 13(15), pages 1-29, July.
    10. Kumar, Manish & Kumar, Arun, 2019. "Experimental validation of performance and degradation study of canal-top photovoltaic system," Applied Energy, Elsevier, vol. 243(C), pages 102-118.
    11. Balaska, Amira & Tahri, Ali & Tahri, Fatima & Stambouli, Amine Boudghene, 2017. "Performance assessment of five different photovoltaic module technologies under outdoor conditions in Algeria," Renewable Energy, Elsevier, vol. 107(C), pages 53-60.
    12. Nofuentes, Gustavo & de la Casa, Juan & Solís-Alemán, Ernesto M. & Fernández, Eduardo F., 2017. "Spectral impact on PV performance in mid-latitude sunny inland sites: Experimental vs. modelled results," Energy, Elsevier, vol. 141(C), pages 1857-1868.
    13. Eke, R. & Betts, T.R. & Gottschalg, R.,, 2017. "Spectral irradiance effects on the outdoor performance of photovoltaic modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 429-434.
    14. Rawat, Rahul & Singh, Ramayan & Sastry, O.S. & Kaushik, S.C., 2017. "Performance evaluation of micromorph based thin film photovoltaic modules in real operating conditions of composite climate," Energy, Elsevier, vol. 120(C), pages 537-548.
    15. Bouaichi, Abdellatif & El Amrani, Aumeur & Ouhadou, Malika & Lfakir, Aberrazak & Messaoudi, Choukri, 2020. "In-situ performance and degradation of three different photovoltaic module technologies installed in arid climate of Morocco," Energy, Elsevier, vol. 190(C).
    16. Singh, Rashmi & Sharma, Madhu & Rawat, Rahul & Banerjee, Chandan, 2020. "Field Analysis of three different silicon-based Technologies in Composite Climate Condition – Part II – Seasonal assessment and performance degradation rates using statistical tools," Renewable Energy, Elsevier, vol. 147(P1), pages 2102-2117.
    17. Singh, Rashmi & Sharma, Madhu & Yadav, Kamlesh, 2022. "Degradation and reliability analysis of photovoltaic modules after operating for 12 years: A case study with comparisons," Renewable Energy, Elsevier, vol. 196(C), pages 1170-1186.
    18. Ustun, Taha Selim & Nakamura, Yasuhiro & Hashimoto, Jun & Otani, Kenji, 2019. "Performance analysis of PV panels based on different technologies after two years of outdoor exposure in Fukushima, Japan," Renewable Energy, Elsevier, vol. 136(C), pages 159-178.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:103:y:2016:i:c:p:261-270. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.