IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i23p15653-d983153.html
   My bibliography  Save this article

Computational Investigation of Wind Loads on Tilted Roof-Mounted Solar Array

Author

Listed:
  • Zhibin Tu

    (College of Civil Engineering and Architecture, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China)

  • Gensheng Zheng

    (College of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China)

  • Jianfeng Yao

    (College of Civil Engineering and Architecture, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China)

  • Guohui Shen

    (College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China)

  • Wenjuan Lou

    (College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China)

Abstract

A detailed computational investigation of the wind field around tilted solar modules mounted on a large building roof has been undertaken, utilizing the Reynolds-Averaged Navier-Stokesv (RANS) approach supplied with the SST k − ω turbulence model. The study investigated the flow field for various tilt angle of modules at normal wind directions relative to the wall. Then the shape factors and moment coefficients of modules were explored. The results show that the recirculation vortex generated by the building edge is disintegrated to smaller local vortices. With the increasing of the tilt angle, an increasing number of local vortices emerged at the leading rows, leading to a relatively large wind pressure and shape factor at the corner of the array. In most tilt angles at 0° and 180° wind direction the shape factors are negative. However, for the 40° and 55° tilt angles at 180° wind direction, the shape factors on the lower surfaces are positive, due to the dominating of approaching flow rather than the local vortices. The array is divided into six zones based on the distribution of shape factors. As the shape factors on upper and lower are similar, the shape factors in most zones for tilt angles from 5° to 55° are quite small. However, shape factors in the leading row for 30°, 40° and 55° are relatively large. This indicates that the shading effect of front rows can significantly reduce the shape factors of the rear rows. Compared to the values calculated by Chinese, American and Japanese standards, the shape factors by simulation are quite small. The moment induced by nonuniform wind pressure, which is often ignored in the literature and standards, is quite large at the leading zones, with a maximum of 0.28 for 55° tilt angle. Ignoring the wind induced moment on the leading zones may make the wind resistance design of the solar module support structure unsafe.

Suggested Citation

  • Zhibin Tu & Gensheng Zheng & Jianfeng Yao & Guohui Shen & Wenjuan Lou, 2022. "Computational Investigation of Wind Loads on Tilted Roof-Mounted Solar Array," Sustainability, MDPI, vol. 14(23), pages 1-17, November.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:23:p:15653-:d:983153
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/23/15653/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/23/15653/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abiola-Ogedengbe, Ayodeji & Hangan, Horia & Siddiqui, Kamran, 2015. "Experimental investigation of wind effects on a standalone photovoltaic (PV) module," Renewable Energy, Elsevier, vol. 78(C), pages 657-665.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mammar, Mohamed & Djouimaa, Sihem & Gärtner, Ulrich & Hamidat, Abderrahmane, 2018. "Wind loads on heliostats of various column heights: An experimental study," Energy, Elsevier, vol. 143(C), pages 867-880.
    2. Jianfeng Yao & Zhibin Tu & Dong Wang & Guohui Shen & Wenjuan Lou, 2022. "Experimental Investigation of Wind Loads on Roof-Mounted Solar Arrays," Sustainability, MDPI, vol. 14(14), pages 1-20, July.
    3. Jangyoul You & Myungkwan Lim & Kipyo You & Changhee Lee, 2021. "Wind Coefficient Distribution of Arranged Ground Photovoltaic Panels," Sustainability, MDPI, vol. 13(7), pages 1-19, April.
    4. Chiteka, Kudzanayi & Arora, Rajesh & Sridhara, S.N. & Enweremadu, C.C., 2021. "Influence of irradiance incidence angle and installation configuration on the deposition of dust and dust-shading of a photovoltaic array," Energy, Elsevier, vol. 216(C).
    5. Jianfeng Yao & Zhibin Tu & Dong Wang & Guohui Shen & Shice Yu & Wenjuan Lou, 2023. "Experimental Investigation of the Parapet Effect on the Wind Load of Roof-Mounted Solar Arrays," Sustainability, MDPI, vol. 15(6), pages 1-18, March.
    6. Mireille B. Tadie Fogaing & Arman Hemmati & Carlos F. Lange & Brian A. Fleck, 2019. "Performance of Turbulence Models in Simulating Wind Loads on Photovoltaics Modules," Energies, MDPI, vol. 12(17), pages 1-16, August.
    7. Chiteka, Kudzanayi & Arora, Rajesh & Sridhara, S.N. & Enweremadu, C.C., 2021. "Optimizing wind barrier and photovoltaic array configuration in soiling mitigation," Renewable Energy, Elsevier, vol. 163(C), pages 225-236.
    8. Francesco Castellani & Abdelgalil Eltayesh & Francesco Natili & Tommaso Tocci & Matteo Becchetti & Lorenzo Capponi & Davide Astolfi & Gianluca Rossi, 2021. "Wind Flow Characterisation over a PV Module through URANS Simulations and Wind Tunnel Optical Flow Methods," Energies, MDPI, vol. 14(20), pages 1-21, October.
    9. Raillani, Benyounes & Salhi, Mourad & Chaatouf, Dounia & Bria, Abir & Amraqui, Samir & Mezrhab, Ahmed, 2023. "A new proposed method to mitigate the soiling rate of a photovoltaic array using first-row height," Applied Energy, Elsevier, vol. 331(C).
    10. A. Bassam & O. May Tzuc & M. Escalante Soberanis & L. J. Ricalde & B. Cruz, 2017. "Temperature Estimation for Photovoltaic Array Using an Adaptive Neuro Fuzzy Inference System," Sustainability, MDPI, vol. 9(8), pages 1-16, August.
    11. Ustun, Taha Selim & Nakamura, Yasuhiro & Hashimoto, Jun & Otani, Kenji, 2019. "Performance analysis of PV panels based on different technologies after two years of outdoor exposure in Fukushima, Japan," Renewable Energy, Elsevier, vol. 136(C), pages 159-178.
    12. Ma, Wenyong & Zhang, Weida & Zhang, Xiaobin & Chen, Wei & Tan, Qiang, 2023. "Experimental investigations on the wind load interference effects of single-axis solar tracker arrays," Renewable Energy, Elsevier, vol. 202(C), pages 566-580.
    13. Ceylan, İlhan & Yilmaz, Sezayi & İnanç, Özgür & Ergün, Alper & Gürel, Ali Etem & Acar, Bahadır & İlker Aksu, Ali, 2019. "Determination of the heat transfer coefficient of PV panels," Energy, Elsevier, vol. 175(C), pages 978-985.
    14. Salah Ud-Din Khan & Irfan Wazeer & Zeyad Almutairi, 2023. "Comparative Analysis of SAM and RETScreen Tools for the Case Study of 600 kW Solar PV System Installation in Riyadh, Saudi Arabia," Sustainability, MDPI, vol. 15(6), pages 1-23, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:23:p:15653-:d:983153. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.