IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v202y2023icp566-580.html
   My bibliography  Save this article

Experimental investigations on the wind load interference effects of single-axis solar tracker arrays

Author

Listed:
  • Ma, Wenyong
  • Zhang, Weida
  • Zhang, Xiaobin
  • Chen, Wei
  • Tan, Qiang

Abstract

Aiming at the interference effect of wind loads on single-axis solar tracker arrays, this study conducts rigid-model pressure measurement wind tunnel tests on a single-row solar tracker and solar tracker arrays. The effects of the tilt angle and wind direction on aerodynamic characteristics are examined. The basic characteristics of the wind-induced interference effects of a single-axis solar tracker array are clarified. The results reveal that when the tilt angle is small, the interference effect is small, the tilt angle increases, the interference effect becomes stronger. From the mean pressure and torque coefficients, the interference effect is mainly manifested as a shielding effect. Based on the fluctuating pressure and torque coefficients, the interference effect appears as a shielding effect and an amplification effect in small- and large-tilt angle ranges, respectively. The wind load power spectrum of the solar modules in the rear-row of the solar tracker arrays presents remarkable frequency peaks, and is more affected by wind-induced vibration than the front module. The influence of the wind direction results in nonuniform distributions of wind loads along the length of the solar tracker. Thus, the enhancement in wind loads on the edge areas of solar arrays caused by the wind direction should be considered.

Suggested Citation

  • Ma, Wenyong & Zhang, Weida & Zhang, Xiaobin & Chen, Wei & Tan, Qiang, 2023. "Experimental investigations on the wind load interference effects of single-axis solar tracker arrays," Renewable Energy, Elsevier, vol. 202(C), pages 566-580.
  • Handle: RePEc:eee:renene:v:202:y:2023:i:c:p:566-580
    DOI: 10.1016/j.renene.2022.11.112
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122017645
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.11.112?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bahrami, Arian & Okoye, Chiemeka Onyeka & Atikol, Ugur, 2017. "Technical and economic assessment of fixed, single and dual-axis tracking PV panels in low latitude countries," Renewable Energy, Elsevier, vol. 113(C), pages 563-579.
    2. Abiola-Ogedengbe, Ayodeji & Hangan, Horia & Siddiqui, Kamran, 2015. "Experimental investigation of wind effects on a standalone photovoltaic (PV) module," Renewable Energy, Elsevier, vol. 78(C), pages 657-665.
    3. Winkelmann, Ulf & Kämper, Christoph & Höffer, Rüdiger & Forman, Patrick & Ahrens, Mark Alexander & Mark, Peter, 2020. "Wind actions on large-aperture parabolic trough solar collectors: Wind tunnel tests and structural analysis," Renewable Energy, Elsevier, vol. 146(C), pages 2390-2407.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Ang & Ma, Wenyong & Yuan, Huanxin & Lu, Lihe, 2024. "The effects of row spacing and ground clearance on the wind load of photovoltaic (PV) arrays," Renewable Energy, Elsevier, vol. 220(C).
    2. Rosario Carbone & Cosimo Borrello, 2023. "A Building-Integrated Bifacial and Transparent PV Generator Operated by an “Under-Glass” Single Axis Solar Tracker," Energies, MDPI, vol. 16(17), pages 1-29, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Ang & Ma, Wenyong & Yuan, Huanxin & Lu, Lihe, 2024. "The effects of row spacing and ground clearance on the wind load of photovoltaic (PV) arrays," Renewable Energy, Elsevier, vol. 220(C).
    2. Mammar, Mohamed & Djouimaa, Sihem & Gärtner, Ulrich & Hamidat, Abderrahmane, 2018. "Wind loads on heliostats of various column heights: An experimental study," Energy, Elsevier, vol. 143(C), pages 867-880.
    3. Choi, Seok Min & Park, Chang-Dae & Cho, Sung-Hoon & Lim, Byung-Ju, 2022. "Effects of wind loads on the solar panel array of a floating photovoltaic system – Experimental study and economic analysis," Energy, Elsevier, vol. 256(C).
    4. Rômulo de Oliveira Azevêdo & Paulo Rotela Junior & Luiz Célio Souza Rocha & Gianfranco Chicco & Giancarlo Aquila & Rogério Santana Peruchi, 2020. "Identification and Analysis of Impact Factors on the Economic Feasibility of Photovoltaic Energy Investments," Sustainability, MDPI, vol. 12(17), pages 1-40, September.
    5. Gönül, Ömer & Yazar, Fatih & Duman, A. Can & Güler, Önder, 2022. "A comparative techno-economic assessment of manually adjustable tilt mechanisms and automatic solar trackers for behind-the-meter PV applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    6. Jianfeng Yao & Zhibin Tu & Dong Wang & Guohui Shen & Wenjuan Lou, 2022. "Experimental Investigation of Wind Loads on Roof-Mounted Solar Arrays," Sustainability, MDPI, vol. 14(14), pages 1-20, July.
    7. Jangyoul You & Myungkwan Lim & Kipyo You & Changhee Lee, 2021. "Wind Coefficient Distribution of Arranged Ground Photovoltaic Panels," Sustainability, MDPI, vol. 13(7), pages 1-19, April.
    8. Chen, Zhidong & Su, Chao & Wu, Zexuan & Wang, Weijia & Chen, Lei & Yang, Lijun & Kong, Yanqiang & Du, Xiaoze, 2023. "Operation strategy and performance analyses of a distributed energy system incorporating concentrating PV/T and air source heat pump for heating supply," Applied Energy, Elsevier, vol. 341(C).
    9. Chiteka, Kudzanayi & Arora, Rajesh & Sridhara, S.N. & Enweremadu, C.C., 2021. "Influence of irradiance incidence angle and installation configuration on the deposition of dust and dust-shading of a photovoltaic array," Energy, Elsevier, vol. 216(C).
    10. Jianfeng Yao & Zhibin Tu & Dong Wang & Guohui Shen & Shice Yu & Wenjuan Lou, 2023. "Experimental Investigation of the Parapet Effect on the Wind Load of Roof-Mounted Solar Arrays," Sustainability, MDPI, vol. 15(6), pages 1-18, March.
    11. Mireille B. Tadie Fogaing & Arman Hemmati & Carlos F. Lange & Brian A. Fleck, 2019. "Performance of Turbulence Models in Simulating Wind Loads on Photovoltaics Modules," Energies, MDPI, vol. 12(17), pages 1-16, August.
    12. Umish Srivastva & K Ravi Kumar & RK Malhotra & SC Kaushik, 2021. "Analytical assessment of a concentrated solar sub-critical thermal power plant using low temperature heat transfer fluid," Energy & Environment, , vol. 32(8), pages 1524-1542, December.
    13. Saeed, Muhammad Abid & Ahmed, Zahoor & Zhang, Weidong, 2021. "Optimal approach for wind resource assessment using Kolmogorov–Smirnov statistic: A case study for large-scale wind farm in Pakistan," Renewable Energy, Elsevier, vol. 168(C), pages 1229-1248.
    14. Chiteka, Kudzanayi & Arora, Rajesh & Sridhara, S.N. & Enweremadu, C.C., 2021. "Optimizing wind barrier and photovoltaic array configuration in soiling mitigation," Renewable Energy, Elsevier, vol. 163(C), pages 225-236.
    15. Malan, Anish & Kumar, K. Ravi, 2022. "Investigation on wind-structure interaction of large aperture parabolic trough solar collector," Renewable Energy, Elsevier, vol. 193(C), pages 309-333.
    16. Yan, Jian & Peng, YouDuo & Liu, YongXiang, 2023. "Wind load and load-carrying optical performance of a large solar dish/stirling power system with 17.7 m diameter," Energy, Elsevier, vol. 283(C).
    17. Zhu, Yongqiang & Liu, Jiahao & Yang, Xiaohua, 2020. "Design and performance analysis of a solar tracking system with a novel single-axis tracking structure to maximize energy collection," Applied Energy, Elsevier, vol. 264(C).
    18. Francesco Castellani & Abdelgalil Eltayesh & Francesco Natili & Tommaso Tocci & Matteo Becchetti & Lorenzo Capponi & Davide Astolfi & Gianluca Rossi, 2021. "Wind Flow Characterisation over a PV Module through URANS Simulations and Wind Tunnel Optical Flow Methods," Energies, MDPI, vol. 14(20), pages 1-21, October.
    19. Gilani, Hooman Azad & Hoseinzadeh, Siamak & Karimi, Hirou & Karimi, Ako & Hassanzadeh, Amir & Garcia, Davide Astiaso, 2021. "Performance analysis of integrated solar heat pump VRF system for the low energy building in Mediterranean island," Renewable Energy, Elsevier, vol. 174(C), pages 1006-1019.
    20. Chinchilla, Monica & Santos-Martín, David & Carpintero-Rentería, Miguel & Lemon, Scott, 2021. "Worldwide annual optimum tilt angle model for solar collectors and photovoltaic systems in the absence of site meteorological data," Applied Energy, Elsevier, vol. 281(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:202:y:2023:i:c:p:566-580. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.