IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i23p15620-d982706.html
   My bibliography  Save this article

Pedagogical Design of K-12 Artificial Intelligence Education: A Systematic Review

Author

Listed:
  • Miao Yue

    (Department of Curriculum and Instruction, The Chinese University of Hong Kong, Hong Kong, China)

  • Morris Siu-Yung Jong

    (Department of Curriculum and Instruction, The Chinese University of Hong Kong, Hong Kong, China
    Centre for Learning Sciences and Technologies, The Chinese University of Hong Kong, Hong Kong, China)

  • Yun Dai

    (Department of Curriculum and Instruction, The Chinese University of Hong Kong, Hong Kong, China)

Abstract

In response to the growing popularity of artificial intelligence (AI) usage in daily life, AI education is increasingly being provided at the K-12 level, with relevant initiatives being launched worldwide. Examining how these programs have been implemented and summarizing useful experiences is thus imperative. Although prior reviews have described the characteristics of AI education programs in publications, the papers reviewed were mostly nonempirical reports, and the analysis typically only involved a descriptive summary. The current review focuses on the most recent empirical studies on AI teaching programs in K-12 contexts through a systematic search of the Web of Science database from 2010 to 2022. To provide a comprehensive overview of the status of AI teaching and learning (T&L), 32 empirical studies were analyzed both descriptively and thematically. We analyzed (1) the research status, (2) the pedagogical design, and (3) the assessments and outcomes of the AI teaching programs. An increasing number of studies have focused on AI education at the K-12 stage, but most of them have a small sample size. Moreover, the data were mostly collected through interviews and self-reports. We reviewed the pedagogical design of AI teaching programs by using Gerlach and Ely’s pedagogical design model. The results comprehensively delineated current AI teaching programs through nine dimensions: learning theory, pedagogical approach, T&L activities, learning content, scale, teaching resources, prior knowledge prerequisite, aims and objectives, assessment, and learning outcome. The results highlighted the positive impact of current AI teaching programs on students’ motivation, engagement, and attitude. However, we observed a lack of sufficient research objectively measuring students’ knowledge acquisition as learning outcomes. Overall, in this paper, we discussed relevant findings in terms of research trends, learning content, teaching units, characteristics of the pedagogical design, and assessment and evaluation by providing illustrations of exemplary designs; we also discussed future directions for research and practice in AI education in the K-12 context.

Suggested Citation

  • Miao Yue & Morris Siu-Yung Jong & Yun Dai, 2022. "Pedagogical Design of K-12 Artificial Intelligence Education: A Systematic Review," Sustainability, MDPI, vol. 14(23), pages 1-29, November.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:23:p:15620-:d:982706
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/23/15620/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/23/15620/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xin Li & Michael Yi-chao Jiang & Morris Siu-yung Jong & Xinping Zhang & Ching-sing Chai, 2022. "Understanding Medical Students’ Perceptions of and Behavioral Intentions toward Learning Artificial Intelligence: A Survey Study," IJERPH, MDPI, vol. 19(14), pages 1-17, July.
    2. David Moher & Alessandro Liberati & Jennifer Tetzlaff & Douglas G Altman & The PRISMA Group, 2009. "Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement," PLOS Medicine, Public Library of Science, vol. 6(7), pages 1-6, July.
    3. Morris Siu-Yung Jong & Jie Geng & Ching Sing Chai & Pei-Yi Lin, 2020. "Development and Predictive Validity of the Computational Thinking Disposition Questionnaire," Sustainability, MDPI, vol. 12(11), pages 1-17, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pantelimon Florin-Valeriu & Posedaru Bogdan-Stefan & Toader Liviu-Andrei & Dulgheru Mihai-Nicolae & Georgescu Tiberiu-Marian, 2024. "The Dynamics of the ICT Workforce and the Effects on the Use of Artificial Intelligence Technologies in the European Union," Proceedings of the International Conference on Business Excellence, Sciendo, vol. 18(1), pages 3490-3502.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. İlkay Unay-Gailhard & Mark A. Brennen, 2022. "How digital communications contribute to shaping the career paths of youth: a review study focused on farming as a career option," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 39(4), pages 1491-1508, December.
    2. Mahin Ghafari & Vali Baigi & Zahra Cheraghi & Amin Doosti-Irani, 2016. "The Prevalence of Asymptomatic Bacteriuria in Iranian Pregnant Women: A Systematic Review and Meta-Analysis," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-10, June.
    3. Elizabeth T Cafiero-Fonseca & Andrew Stawasz & Sydney T Johnson & Reiko Sato & David E Bloom, 2017. "The full benefits of adult pneumococcal vaccination: A systematic review," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-23, October.
    4. Santos Urbina & Sofía Villatoro & Jesús Salinas, 2021. "Self-Regulated Learning and Technology-Enhanced Learning Environments in Higher Education: A Scoping Review," Sustainability, MDPI, vol. 13(13), pages 1-12, June.
    5. Oded Berger-Tal & Alison L Greggor & Biljana Macura & Carrie Ann Adams & Arden Blumenthal & Amos Bouskila & Ulrika Candolin & Carolina Doran & Esteban Fernández-Juricic & Kiyoko M Gotanda & Catherine , 2019. "Systematic reviews and maps as tools for applying behavioral ecology to management and policy," Behavioral Ecology, International Society for Behavioral Ecology, vol. 30(1), pages 1-8.
    6. Nadine Desrochers & Adèle Paul‐Hus & Jen Pecoskie, 2017. "Five decades of gratitude: A meta‐synthesis of acknowledgments research," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 68(12), pages 2821-2833, December.
    7. Maryono, Maryono & Killoes, Aditya Marendra & Adhikari, Rajendra & Abdul Aziz, Ammar, 2024. "Agriculture development through multi-stakeholder partnerships in developing countries: A systematic literature review," Agricultural Systems, Elsevier, vol. 213(C).
    8. Alene Sze Jing Yong & Yi Heng Lim & Mark Wing Loong Cheong & Ednin Hamzah & Siew Li Teoh, 2022. "Willingness-to-pay for cancer treatment and outcome: a systematic review," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 23(6), pages 1037-1057, August.
    9. Xue-Ying Xu & Hong Kong & Rui-Xiang Song & Yu-Han Zhai & Xiao-Fei Wu & Wen-Si Ai & Hong-Bo Liu, 2014. "The Effectiveness of Noninvasive Biomarkers to Predict Hepatitis B-Related Significant Fibrosis and Cirrhosis: A Systematic Review and Meta-Analysis of Diagnostic Test Accuracy," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-16, June.
    10. Vicente Miñana-Signes & Manuel Monfort-Pañego & Javier Valiente, 2021. "Teaching Back Health in the School Setting: A Systematic Review of Randomized Controlled Trials," IJERPH, MDPI, vol. 18(3), pages 1-18, January.
    11. Agnieszka A. Tubis & Katarzyna Grzybowska, 2022. "In Search of Industry 4.0 and Logistics 4.0 in Small-Medium Enterprises—A State of the Art Review," Energies, MDPI, vol. 15(22), pages 1-26, November.
    12. Obsa Urgessa Ayana & Jima Degaga, 2022. "Effects of rural electrification on household welfare: a meta-regression analysis," International Review of Economics, Springer;Happiness Economics and Interpersonal Relations (HEIRS), vol. 69(2), pages 209-261, June.
    13. Caloffi, Annalisa & Colovic, Ana & Rizzoli, Valentina & Rossi, Federica, 2023. "Innovation intermediaries' types and functions: A computational analysis of the literature," Technological Forecasting and Social Change, Elsevier, vol. 189(C).
    14. García-Poole, Chloe & Byrne, Sonia & Rodrigo, María José, 2019. "How do communities intervene with adolescents at psychosocial risk? A systematic review of positive development programs," Children and Youth Services Review, Elsevier, vol. 99(C), pages 194-209.
    15. Jie Zhao & Ji Chen & Damien Beillouin & Hans Lambers & Yadong Yang & Pete Smith & Zhaohai Zeng & Jørgen E. Olesen & Huadong Zang, 2022. "Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    16. Qing Ye & Bao-Xin Qian & Wei-Li Yin & Feng-Mei Wang & Tao Han, 2016. "Association between the HFE C282Y, H63D Polymorphisms and the Risks of Non-Alcoholic Fatty Liver Disease, Liver Cirrhosis and Hepatocellular Carcinoma: An Updated Systematic Review and Meta-Analysis o," PLOS ONE, Public Library of Science, vol. 11(9), pages 1-17, September.
    17. Bishal Mohindru & David Turner & Tracey Sach & Diana Bilton & Siobhan Carr & Olga Archangelidi & Arjun Bhadhuri & Jennifer A. Whitty, 2020. "Health State Utility Data in Cystic Fibrosis: A Systematic Review," PharmacoEconomics - Open, Springer, vol. 4(1), pages 13-25, March.
    18. Subramaniam, Mega & Pang, Natalie & Morehouse, Shandra & Asgarali-Hoffman, S. Nisa, 2020. "Examining vulnerability in youth digital information practices scholarship: What are we missing or exhausting?," Children and Youth Services Review, Elsevier, vol. 116(C).
    19. Neal R. Haddaway & Matthew J. Page & Chris C. Pritchard & Luke A. McGuinness, 2022. "PRISMA2020: An R package and Shiny app for producing PRISMA 2020‐compliant flow diagrams, with interactivity for optimised digital transparency and Open Synthesis," Campbell Systematic Reviews, John Wiley & Sons, vol. 18(2), June.
    20. Ding Zhu & Mindan Wu & Yuan Cao & Shihua Lin & Nanxia Xuan & Chen Zhu & Wen Li & Huahao Shen, 2018. "Heated humidification did not improve compliance of positive airway pressure and subjective daytime sleepiness in obstructive sleep apnea syndrome: A meta-analysis," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-16, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:23:p:15620-:d:982706. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.