IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i23p15554-d981128.html
   My bibliography  Save this article

Carbon Emission Measurement and Influencing Factors of China’s Beef Cattle Industry from a Whole Industry Chain Perspective

Author

Listed:
  • Yumeng Sun

    (Institute of Agricultural Economics and Development, Chinese Academy of Agricultural Sciences, Beijing 100081, China)

  • Chun Yang

    (Institute of Agricultural Economics and Development, Chinese Academy of Agricultural Sciences, Beijing 100081, China)

  • Mingli Wang

    (Institute of Agricultural Economics and Development, Chinese Academy of Agricultural Sciences, Beijing 100081, China)

  • Xuezhen Xiong

    (Institute of Agricultural Economics and Development, Chinese Academy of Agricultural Sciences, Beijing 100081, China)

  • Xuefen Long

    (Institute of Agricultural Economics and Development, Chinese Academy of Agricultural Sciences, Beijing 100081, China)

Abstract

The beef cattle industry is pivotal in China’s livestock industry and is important for meeting people’s needs for a better life in the new era. It is strategically important for prospering the frontier, enriching people, and revitalizing the countryside. Because of the national “double carbon” target, there will be an impact on the development of the meat cattle industry, which has a relatively high carbon emission level. The scientific measurement of carbon emission levels in the beef cattle industry, clarifying its main impact factors, are particularly critical. This study measured the carbon emissions from China’s beef cattle industry from 2008 to 2020, using provincial data and the life cycle method, and investigated its influencing factors using a spatial econometric model. The study is of great practical significance for accurately understanding the carbon emissions of the beef cattle industry and for promoting low carbon emission reductions and the transformational development of the beef cattle industry.

Suggested Citation

  • Yumeng Sun & Chun Yang & Mingli Wang & Xuezhen Xiong & Xuefen Long, 2022. "Carbon Emission Measurement and Influencing Factors of China’s Beef Cattle Industry from a Whole Industry Chain Perspective," Sustainability, MDPI, vol. 14(23), pages 1-20, November.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:23:p:15554-:d:981128
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/23/15554/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/23/15554/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Heena Panchasara & Nahidul Hoque Samrat & Nahina Islam, 2021. "Greenhouse Gas Emissions Trends and Mitigation Measures in Australian Agriculture Sector—A Review," Agriculture, MDPI, vol. 11(2), pages 1-16, January.
    2. Alemu, Aklilu W. & Janzen, Henry & Little, Shannan & Hao, Xiying & Thompson, Donald J. & Baron, Vern & Iwaasa, Alan & Beauchemin, Karen A. & Kröbel, Roland, 2017. "Assessment of grazing management on farm greenhouse gas intensity of beef production systems in the Canadian Prairies using life cycle assessment," Agricultural Systems, Elsevier, vol. 158(C), pages 1-13.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shixiong Song & Siyuan Zhao & Ye Zhang & Yongxi Ma, 2023. "Carbon Emissions from Agricultural Inputs in China over the Past Three Decades," Agriculture, MDPI, vol. 13(5), pages 1-12, April.
    2. Shanshan Zhao & Mingsen Qin & Xia Yang & Wenke Bai & Yunfeng Yao & Junqiang Wang, 2023. "Freeze–Thaw Cycles Have More of an Effect on Greenhouse Gas Fluxes than Soil Water Content on the Eastern Edge of the Qinghai–Tibet Plateau," Sustainability, MDPI, vol. 15(2), pages 1-15, January.
    3. Muhammad Salim Butt & Hifsa Shahid & Farhan Ahmed Butt & Iqra Farhat & Munazza Sadaf & Muhammad Raashid & Ahmad Taha, 2022. "Power Generation Analysis of Terrestrial Ultraviolet-Assisted Solid Oxide Electrolyzer Cell," Energies, MDPI, vol. 15(3), pages 1-14, January.
    4. Pogue, Sarah J. & Kröbel, Roland & Janzen, H. Henry & Alemu, Aklilu W. & Beauchemin, Karen A. & Little, Shannan & Iravani, Majid & de Souza, Danielle Maia & McAllister, Tim A., 2020. "A social-ecological systems approach for the assessment of ecosystem services from beef production in the Canadian prairie," Ecosystem Services, Elsevier, vol. 45(C).
    5. Zbigniew Gołaś, 2022. "Changes in Energy-Related Carbon Dioxide Emissions of the Agricultural Sector in Poland from 2000 to 2019," Energies, MDPI, vol. 15(12), pages 1-18, June.
    6. Fadhlur Rahim Azmi & Suhaiza Zailani & Mastura Roni, 2023. "A Review of the Critical Gaps in the Food Security Literature: Addressing Key Issues for Sustainable Development," Information Management and Business Review, AMH International, vol. 15(2), pages 35-46.
    7. Kamila Nowosad & Jan Bocianowski & Farzad Kianersi & Alireza Pour-Aboughadareh, 2023. "Analysis of Linkage on Interaction of Main Aspects (Genotype by Environment Interaction, Stability and Genetic Parameters) of 1000 Kernels in Maize ( Zea mays L.)," Agriculture, MDPI, vol. 13(10), pages 1-17, October.
    8. Christine Cleghorn & Ingrid Mulder & Alex Macmillan & Anja Mizdrak & Jonathan Drew & Nhung Nghiem & Tony Blakely & Cliona Ni Mhurchu, 2022. "Can a Greenhouse Gas Emissions Tax on Food also Be Healthy and Equitable? A Systemised Review and Modelling Study from Aotearoa New Zealand," IJERPH, MDPI, vol. 19(8), pages 1-15, April.
    9. Maksymilian Mądziel, 2023. "Liquified Petroleum Gas-Fuelled Vehicle CO 2 Emission Modelling Based on Portable Emission Measurement System, On-Board Diagnostics Data, and Gradient-Boosting Machine Learning," Energies, MDPI, vol. 16(6), pages 1-15, March.
    10. Putri Aliah Mohd Hidzir & Shafinar Ismail & Sharifah Heryati Syed Nor & Aqilah Nadiah Md Sahiq, 2023. "Financial Well-Being of Micro-Entrepreneurs: A Proposed Conceptual Framework," Information Management and Business Review, AMH International, vol. 15(3), pages 418-428.
    11. Stanley, Paige L. & Rowntree, Jason E. & Beede, David K. & DeLonge, Marcia S. & Hamm, Michael W., 2018. "Impacts of soil carbon sequestration on life cycle greenhouse gas emissions in Midwestern USA beef finishing systems," Agricultural Systems, Elsevier, vol. 162(C), pages 249-258.
    12. Murillo Vetroni Barros & Rômulo Henrique Gomes Jesus & Bruno Silva Ribeiro & Cassiano Moro Piekarski, 2023. "Going in Circles: Key Aspects for Circular Economy Contributions to Agro-industrial Cooperatives," Circular Economy and Sustainability, Springer, vol. 3(2), pages 861-880, June.
    13. Barnes, Andrew P. & Bevan, Kev & Moxey, Andrew & Grierson, Sascha & Toma, Luiza, 2023. "Identifying best practice in Less Favoured Area mixed livestock systems," Agricultural Systems, Elsevier, vol. 208(C).
    14. Nahina Islam & Md Mamunur Rashid & Faezeh Pasandideh & Biplob Ray & Steven Moore & Rajan Kadel, 2021. "A Review of Applications and Communication Technologies for Internet of Things (IoT) and Unmanned Aerial Vehicle (UAV) Based Sustainable Smart Farming," Sustainability, MDPI, vol. 13(4), pages 1-20, February.
    15. Modongo, Oteng & Kulshreshtha, Suren N., 2018. "Economics of mitigating greenhouse gas emissions from beef production in western Canada," Agricultural Systems, Elsevier, vol. 162(C), pages 229-238.
    16. Daiva Makutėnienė & Dalia Perkumienė & Valdemaras Makutėnas, 2022. "Logarithmic Mean Divisia Index Decomposition Based on Kaya Identity of GHG Emissions from Agricultural Sector in Baltic States," Energies, MDPI, vol. 15(3), pages 1-26, February.
    17. Rolandas Drejeris & Martynas Rusteika, 2022. "New Approach to the Public Authorities’ Activities Development in the Crop Insurance System: Lithuanian Case," Agriculture, MDPI, vol. 12(8), pages 1-15, August.
    18. Xiaowen Dai & Xin Wu & Yi Chen & Yanqiu He & Fang Wang & Yuying Liu, 2022. "Real Drivers and Spatial Characteristics of CO 2 Emissions from Animal Husbandry: A Regional Empirical Study of China," Agriculture, MDPI, vol. 12(4), pages 1-18, April.
    19. Herron, Jonathan & Curran, Thomas P. & Moloney, Aidan P. & O'Brien, Donal, 2019. "Whole farm modelling the effect of grass silage harvest date and nitrogen fertiliser rate on nitrous oxide emissions from grass-based suckler to beef farming systems," Agricultural Systems, Elsevier, vol. 175(C), pages 66-78.
    20. Rui Zhang & Lingling Zhang & Meijuan He & Zongzhi Wang, 2023. "Spatial Association Network and Driving Factors of Agricultural Eco-Efficiency in the Hanjiang River Basin, China," Agriculture, MDPI, vol. 13(6), pages 1-16, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:23:p:15554-:d:981128. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.