Smart Modelling of a Sustainable Biological Wastewater Treatment Technologies: A Critical Review
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Mosleh Hmoud Al-Adhaileh & Fawaz Waselallah Alsaade, 2021. "Modelling and Prediction of Water Quality by Using Artificial Intelligence," Sustainability, MDPI, vol. 13(8), pages 1-18, April.
- Abdullah Faisal Alshalif & J. M. Irwan & Husnul Azan Tajarudin & N. Othman & A. A. Al-Gheethi & S. Shamsudin & Wahid Ali Hamood Altowayti & Saddam Abo Sabah, 2021. "Factors Affecting Carbonation Depth in Foamed Concrete Bricks for Accelerate CO 2 Sequestration," Sustainability, MDPI, vol. 13(19), pages 1-15, October.
- Briant Kang Xian Ho & Baharin Azahari & Mohd Firdaus Bin Yhaya & Amir Talebi & Charles Wai Chun Ng & Husnul Azan Tajarudin & Norli Ismail, 2020. "Green Technology Approach for Reinforcement of Calcium Chloride Cured Sodium Alginate Films by Isolated Bacteria from Palm Oil Mill Effluent (POME)," Sustainability, MDPI, vol. 12(22), pages 1-13, November.
- Hill, Tim & Marquez, Leorey & O'Connor, Marcus & Remus, William, 1994. "Artificial neural network models for forecasting and decision making," International Journal of Forecasting, Elsevier, vol. 10(1), pages 5-15, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Syafiqa Ayob & Wahid Ali Hamood Altowayti & Norzila Othman & Faisal Sheikh Khalid & Shafinaz Shahir & Husnul Azan Tajarudin & Ammar Mohammed Ali Alqadasi, 2023. "Experimental and Modeling Study on the Removal of Mn, Fe, and Zn from Fiberboard Industrial Wastewater Using Modified Activated Carbon," Sustainability, MDPI, vol. 15(8), pages 1-23, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Prybutok, Victor R. & Yi, Junsub & Mitchell, David, 2000. "Comparison of neural network models with ARIMA and regression models for prediction of Houston's daily maximum ozone concentrations," European Journal of Operational Research, Elsevier, vol. 122(1), pages 31-40, April.
- C, Deep Prakash & Majumdar, Adrija, 2023. "Predicting sports fans’ engagement with culturally aligned social media content: A language expectancy perspective," Journal of Retailing and Consumer Services, Elsevier, vol. 75(C).
- Leung, Philip C.M. & Lee, Eric W.M., 2013. "Estimation of electrical power consumption in subway station design by intelligent approach," Applied Energy, Elsevier, vol. 101(C), pages 634-643.
- Chatfield, Chris, 1995. "Positive or negative?," International Journal of Forecasting, Elsevier, vol. 11(4), pages 501-502, December.
- Oscar Claveria & Salvador Torra, 2013.
"“Forecasting Business surveys indicators: neural networks vs. time series models”,"
AQR Working Papers
201312, University of Barcelona, Regional Quantitative Analysis Group, revised Nov 2013.
- Oscar Claveria & Salvador Torra, 2013. "“Forecasting Business surveys indicators: neural networks vs. time series models”," IREA Working Papers 201320, University of Barcelona, Research Institute of Applied Economics, revised Nov 2013.
- Thomassey, Sebastien & Happiette, Michel & Castelain, Jean Marie, 2005. "A short and mean-term automatic forecasting system--application to textile logistics," European Journal of Operational Research, Elsevier, vol. 161(1), pages 275-284, February.
- Arshia Amiri & Ulf-G Gerdtham, 2012.
"Granger Causality Between Exports, Imports and GDP in France: Evidance from Using Geostatistical Models,"
Economic Research Guardian, Mutascu Publishing, vol. 2(1), pages 43-59, May.
- Amiri, Arshia & Gerdtham, Ulf-G, 2011. "Relationship between exports, imports, and economic growth in France: evidence from cointegration analysis and Granger causality with using geostatistical models," MPRA Paper 34190, University Library of Munich, Germany.
- Geraint Johnes, 2000. "Up Around the Bend: Linear and nonlinear models of the UK economy compared," International Review of Applied Economics, Taylor & Francis Journals, vol. 14(4), pages 485-493.
- Anna Kuzminova & Mariia Dmitrenko & Anton Mazur & Sergey Ermakov & Anastasia Penkova, 2021. "Novel Pervaporation Membranes Based on Biopolymer Sodium Alginate Modified by FeBTC for Isopropanol Dehydration," Sustainability, MDPI, vol. 13(11), pages 1-25, May.
- Callen, Jeffrey L. & Kwan, Clarence C. Y. & Yip, Patrick C. Y. & Yuan, Yufei, 1996. "Neural network forecasting of quarterly accounting earnings," International Journal of Forecasting, Elsevier, vol. 12(4), pages 475-482, December.
- de Lucio, Juan, 2021. "Estimación adelantada del crecimiento regional mediante redes neuronales LSTM," INVESTIGACIONES REGIONALES - Journal of REGIONAL RESEARCH, Asociación Española de Ciencia Regional, issue 49, pages 45-64.
- Mioara CHIRITA & Daniela SARPE, 2011. "Usefulness of Artificial Neural Networks for Predicting Financial and Economic Crisis," Risk in Contemporary Economy, "Dunarea de Jos" University of Galati, Faculty of Economics and Business Administration, pages 44-48.
- Daniel Santin, 2008.
"On the approximation of production functions: a comparison of artificial neural networks frontiers and efficiency techniques,"
Applied Economics Letters, Taylor & Francis Journals, vol. 15(8), pages 597-600.
- Santin, Daniel, 2004. "On the Approximation of Production Functions: A Comparison of Artificial Neural Networks Frontiers and Efficiency Techniques," Efficiency Series Papers 2004/03, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
- Yi-Jen Mon, 2022. "Vision Robot Path Control Based on Artificial Intelligence Image Classification and Sustainable Ultrasonic Signal Transformation Technology," Sustainability, MDPI, vol. 14(9), pages 1-14, April.
- Pei En Lee, 2019. "The Empirical Study of Investor Sentiment on Stock Return Prediction," International Journal of Economics and Financial Issues, Econjournals, vol. 9(2), pages 119-124.
- Lolli, F. & Gamberini, R. & Regattieri, A. & Balugani, E. & Gatos, T. & Gucci, S., 2017. "Single-hidden layer neural networks for forecasting intermittent demand," International Journal of Production Economics, Elsevier, vol. 183(PA), pages 116-128.
- C. Orsenigo & C. Vercellis, 2018. "Anthropogenic influence on global warming for effective cost-benefit analysis: a machine learning perspective," Economia e Politica Industriale: Journal of Industrial and Business Economics, Springer;Associazione Amici di Economia e Politica Industriale, vol. 45(3), pages 425-442, September.
- Icen Yoosefdoost & Abbas Khashei-Siuki & Hossein Tabari & Omolbani Mohammadrezapour, 2022. "Runoff Simulation Under Future Climate Change Conditions: Performance Comparison of Data-Mining Algorithms and Conceptual Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(4), pages 1191-1215, March.
- Zhang, Guoqiang & Eddy Patuwo, B. & Y. Hu, Michael, 1998. "Forecasting with artificial neural networks:: The state of the art," International Journal of Forecasting, Elsevier, vol. 14(1), pages 35-62, March.
- Oscar Claveria & Enric Monte & Salvador Torra, 2015.
"“Self-organizing map analysis of agents’ expectations. Different patterns of anticipation of the 2008 financial crisis”,"
AQR Working Papers
201508, University of Barcelona, Regional Quantitative Analysis Group, revised Mar 2015.
- Oscar Claveria & Enric Monte & Salvador Torra, 2015. "“Self-organizing map analysis of agents' expectations. Different patterns of anticipation of the 2008 financial crisis”," IREA Working Papers 201511, University of Barcelona, Research Institute of Applied Economics, revised Mar 2015.
More about this item
Keywords
wastewater treatment; response surface methodology; Monod model; Contois model;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:22:p:15353-:d:977072. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.