IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i22p15107-d973280.html
   My bibliography  Save this article

Distribution Pattern of Coral Reef Fishes in China

Author

Listed:
  • Juan Shi

    (Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
    Guangdong Provincial Key Laboratory of Fishery Ecology Environment, Guangzhou 510300, China
    Observation and Research Station of Pearl River Estuary Ecosystem, Guangzhou 510300, China)

  • Chunhou Li

    (Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
    Guangdong Provincial Key Laboratory of Fishery Ecology Environment, Guangzhou 510300, China
    Observation and Research Station of Pearl River Estuary Ecosystem, Guangzhou 510300, China)

  • Teng Wang

    (Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
    Guangdong Provincial Key Laboratory of Fishery Ecology Environment, Guangzhou 510300, China
    Observation and Research Station of Pearl River Estuary Ecosystem, Guangzhou 510300, China
    Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province/Sanya Tropical Fisheries Research Institute, Sanya 572018, China)

  • Jinfa Zhao

    (Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
    Guangdong Provincial Key Laboratory of Fishery Ecology Environment, Guangzhou 510300, China
    Observation and Research Station of Pearl River Estuary Ecosystem, Guangzhou 510300, China)

  • Yong Liu

    (Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
    Guangdong Provincial Key Laboratory of Fishery Ecology Environment, Guangzhou 510300, China
    Observation and Research Station of Pearl River Estuary Ecosystem, Guangzhou 510300, China
    Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province/Sanya Tropical Fisheries Research Institute, Sanya 572018, China)

  • Yayuan Xiao

    (Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
    Guangdong Provincial Key Laboratory of Fishery Ecology Environment, Guangzhou 510300, China
    Observation and Research Station of Pearl River Estuary Ecosystem, Guangzhou 510300, China)

Abstract

Coral reefs are known as “tropical rain forests” in the ocean. Fish diversity is extremely high, accounting for one-third of marine fishes. To better protect and manage coral reef fishes, this study systematically compiled documents and databases published in China. We counted 2855 species of coral reef fishes in China, which belong to 3 classes, 41 orders, 252 families, and 1017 genera. Among these, Perciformes was the dominant order, accounting for 57.31% of the total species. Gobiidae (7.43%), Labridae (5.36%), Pomacentridae (4.52%), and Serranidae (4.38%) were the main families, while other families accounted for less than 4%. Furthermore, 5.56% of coral reef fish species have entered the IUCN Red List. The present study found that coral reef fishes can be divided into nearshore and offshore. This was mainly because the nearshore coral reef fishes were more affected by human disturbance and runoff from the mainland, whereas offshore coral reef fishes were in areas with high salinity and temperature far from the mainland, where human disturbance was less. Coral reef fish species’ diversity had a significant positive correlation with coral species diversity ( p < 0.05), mainly because corals provide habitat and shelter. This study is the first systematic compilation and analysis of coral reef fishes in China and provides a basic reference for global protection management and biological geographical analysis.

Suggested Citation

  • Juan Shi & Chunhou Li & Teng Wang & Jinfa Zhao & Yong Liu & Yayuan Xiao, 2022. "Distribution Pattern of Coral Reef Fishes in China," Sustainability, MDPI, vol. 14(22), pages 1-16, November.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:22:p:15107-:d:973280
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/22/15107/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/22/15107/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. D. R. Bellwood & T. P. Hughes & C. Folke & M. Nyström, 2004. "Confronting the coral reef crisis," Nature, Nature, vol. 429(6994), pages 827-833, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Teh, Louise S.L. & Teh, Lydia C.L. & Rashid Sumaila, U., 2014. "Time preference of small-scale fishers in open access and traditionally managed reef fisheries," Marine Policy, Elsevier, vol. 44(C), pages 222-231.
    2. Yu-Rong Cheng & Chi-Hsiang Chin & Ding-Fa Lin & Chao-Kang Wang, 2020. "The Probability of an Unrecoverable Coral Community in Dongsha Atoll Marine National Park Due to Recurrent Disturbances," Sustainability, MDPI, vol. 12(21), pages 1-20, October.
    3. Conrad W Speed & Russ C Babcock & Kevin P Bancroft & Lynnath E Beckley & Lynda M Bellchambers & Martial Depczynski & Stuart N Field & Kim J Friedman & James P Gilmour & Jean-Paul A Hobbs & Halina T Ko, 2013. "Dynamic Stability of Coral Reefs on the West Australian Coast," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-12, July.
    4. Wamukota, A. & Brewer, T.D. & Crona, B., 2014. "Market integration and its relation to income distribution and inequality among fishers and traders: The case of two small-scale Kenyan reef fisheries," Marine Policy, Elsevier, vol. 48(C), pages 93-101.
    5. Reiji Masuda, 2020. "Tropical fishes vanished after the operation of a nuclear power plant was suspended in the Sea of Japan," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-13, May.
    6. Christine Bergman & Rochelle Good & Andrew Moreo, 2022. "Influencing Hotel Patrons to Use Reef-Safe Sunscreen," Tourism and Hospitality, MDPI, vol. 3(3), pages 1-22, June.
    7. Chambers, Paul E. & Glenn Dutcher, E. & Mark Isaac, R., 2018. "Improving Environmental Quality Through Aid: An Experimental Analysis of Aid Structures With Heterogeneous Agents," Ecological Economics, Elsevier, vol. 146(C), pages 435-446.
    8. Srinivasan, Venkatraman & Kumar, Praveen, 2015. "Emergent and divergent resilience behavior in catastrophic shift systems," Ecological Modelling, Elsevier, vol. 298(C), pages 87-105.
    9. Pittman, S.J. & Christensen, J.D. & Caldow, C. & Menza, C. & Monaco, M.E., 2007. "Predictive mapping of fish species richness across shallow-water seascapes in the Caribbean," Ecological Modelling, Elsevier, vol. 204(1), pages 9-21.
    10. Matthew J. Powell-Palm & E. Michael Henley & Anthony N. Consiglio & Claire Lager & Brooke Chang & Riley Perry & Kendall Fitzgerald & Jonathan Daly & Boris Rubinsky & Mary Hagedorn, 2023. "Cryopreservation and revival of Hawaiian stony corals using isochoric vitrification," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    11. Brathwaite, Angelique & Pascal, Nicolas & Clua, Eric, 2021. "When are payment for ecosystems services suitable for coral reef derived coastal protection?: A review of scientific requirements," Ecosystem Services, Elsevier, vol. 49(C).
    12. Muko, Soyoka & Arakaki, Seiji & Tamai, Reiko & Sakai, Kazuhiko, 2014. "An individual-based model for population viability analysis of the brooding coral Seriatopora hystrix," Ecological Modelling, Elsevier, vol. 277(C), pages 68-76.
    13. Alexandre C. Siqueira & Wolfgang Kiessling & David R. Bellwood, 2022. "Fast-growing species shape the evolution of reef corals," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    14. Meixia Zhao & Haiyang Zhang & Yu Zhong & Dapeng Jiang & Guohui Liu & Hongqiang Yan & Hongyu Zhang & Pu Guo & Cuitian Li & Hongqiang Yang & Tegu Chen & Rui Wang, 2019. "The Status of Coral Reefs and Its Importance for Coastal Protection: A Case Study of Northeastern Hainan Island, South China Sea," Sustainability, MDPI, vol. 11(16), pages 1-13, August.
    15. Jan Tebben & James R Guest & Tsai M Sin & Peter D Steinberg & Tilmann Harder, 2014. "Corals Like It Waxed: Paraffin-Based Antifouling Technology Enhances Coral Spat Survival," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-8, January.
    16. Dercole, Fabio & Prieu, Charlotte & Rinaldi, Sergio, 2010. "Technological change and fisheries sustainability: The point of view of Adaptive Dynamics," Ecological Modelling, Elsevier, vol. 221(3), pages 379-387.
    17. Edwin A. Hernández-Delgado & Ricardo Laureano, 2024. "Bringing Back Reef Fish: Sustainable Impacts of Community-Based Restoration of Elkhorn Coral ( Acropora palmata ) in Vega Baja, Puerto Rico (2008–2023)," Sustainability, MDPI, vol. 16(14), pages 1-43, July.
    18. Nicolai Konow & David R Bellwood, 2011. "Evolution of High Trophic Diversity Based on Limited Functional Disparity in the Feeding Apparatus of Marine Angelfishes (f. Pomacanthidae)," PLOS ONE, Public Library of Science, vol. 6(9), pages 1-11, September.
    19. Doyen, L. & De Lara, M. & Ferraris, J. & Pelletier, D., 2007. "Sustainability of exploited marine ecosystems through protected areas: A viability model and a coral reef case study," Ecological Modelling, Elsevier, vol. 208(2), pages 353-366.
    20. Ben Daley & Peter Griggs & Helene Marsh, 2008. "Exploiting Marine Wildlife In Queensland: The Commercial Dugong And Marine Turtle Fisheries, 1847–1969," Australian Economic History Review, Economic History Society of Australia and New Zealand, vol. 48(3), pages 227-265, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:22:p:15107-:d:973280. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.