IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i21p13876-d953069.html
   My bibliography  Save this article

Emergy Synthesis of Two Oyster Aquaculture Systems in Zhejiang Province, China

Author

Listed:
  • Duian Lu

    (Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
    Key Laboratory of Ocean Space Resource Management Technology, Ministry of Natural Resources, Hangzhou 310012, China)

  • Jie Cheng

    (Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
    Key Laboratory of Ocean Space Resource Management Technology, Ministry of Natural Resources, Hangzhou 310012, China)

  • Zhenzhou Feng

    (Key Laboratory of Ocean Space Resource Management Technology, Ministry of Natural Resources, Hangzhou 310012, China)

  • Li Sun

    (Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
    Key Laboratory of Ocean Space Resource Management Technology, Ministry of Natural Resources, Hangzhou 310012, China)

  • Wei Mo

    (Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
    Key Laboratory of Ocean Space Resource Management Technology, Ministry of Natural Resources, Hangzhou 310012, China)

  • Degang Wang

    (Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
    Key Laboratory of Ocean Space Resource Management Technology, Ministry of Natural Resources, Hangzhou 310012, China)

Abstract

China is rich in oyster resources and has a long history of oyster aquaculture. Various forms of oyster aquaculture coexist in the coastal regions of China, which are dominated by raft aquaculture and long-line aquaculture. The objective of this study is to assess the environmental sustainability of the oyster aquaculture systems located in Jiantiao Bay, Zhejiang province, China. Emergy synthesis is used in the study to quantify the contributions of the natural and economic inputs to the oyster aquaculture systems, in order to better understand the sustainability. The results show that the raft oyster aquaculture system was high in emergy inputs and yield per unit area, whereas the long-line oyster aquaculture system was low in emergy inputs and yield per unit area. However, the transformities of the oysters from the raft oyster aquaculture system and the long-line aquaculture were similar, reflecting that both systems had a similar efficiency in using natural and economic resources. The oyster aquaculture systems had a different impact on the environment as inferred from the emergy indicators. The higher emergy yield ratio and low emergy loading ratio in the long-line oyster aquaculture system suggest that the system could gain more net benefit, and had a lower impact on the surrounding environment, than raft oyster aquaculture system, and can been considered to be more sustainable. Nevertheless, oyster aquaculture was a labor-intensive process and relied highly on purchased resources, such as labor and construction materials. If the construction materials could be used for a longer time, the oyster aquaculture systems might be more sustainable and environmentally friendly.

Suggested Citation

  • Duian Lu & Jie Cheng & Zhenzhou Feng & Li Sun & Wei Mo & Degang Wang, 2022. "Emergy Synthesis of Two Oyster Aquaculture Systems in Zhejiang Province, China," Sustainability, MDPI, vol. 14(21), pages 1-20, October.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:13876-:d:953069
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/21/13876/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/21/13876/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Edrisi, Sheikh Adil & Sahiba, Sheikh Arshiya & Chen, Bin & Abhilash, P.C., 2022. "Emergy-based sustainability analysis of bioenergy production from marginal and degraded lands of India," Ecological Modelling, Elsevier, vol. 466(C).
    2. Baral, Anil & Bakshi, Bhavik R., 2010. "Emergy analysis using US economic input–output models with applications to life cycles of gasoline and corn ethanol," Ecological Modelling, Elsevier, vol. 221(15), pages 1807-1818.
    3. Brown, Mark T. & Protano, Gaetano & Ulgiati, Sergio, 2011. "Assessing geobiosphere work of generating global reserves of coal, crude oil, and natural gas," Ecological Modelling, Elsevier, vol. 222(3), pages 879-887.
    4. Beatriz Queiróz dos Reis & Danny Alexander Rojas Moreno & Rafael Araújo Nacimento & Vitória Toffolo Luiz & Laya Kannan Silva Alves & Biagio Fernando Giannetti & Augusto Hauber Gameiro, 2021. "Economic and Environmental Assessment Using Emergy of Sheep Production in Brazil," Sustainability, MDPI, vol. 13(21), pages 1-14, October.
    5. Brown, Mark T. & Campbell, Daniel E. & De Vilbiss, Christopher & Ulgiati, Sergio, 2016. "The geobiosphere emergy baseline: A synthesis," Ecological Modelling, Elsevier, vol. 339(C), pages 92-95.
    6. Pierce, Janine & Robinson, Guy, 2013. "Oysters thrive in the right environment: The social sustainability of oyster farming in the Eyre Peninsula, South Australia," Marine Policy, Elsevier, vol. 37(C), pages 77-85.
    7. Brown, Mark T. & Ulgiati, Sergio, 2010. "Updated evaluation of exergy and emergy driving the geobiosphere: A review and refinement of the emergy baseline," Ecological Modelling, Elsevier, vol. 221(20), pages 2501-2508.
    8. Ingwersen, Wesley W., 2010. "Uncertainty characterization for emergy values," Ecological Modelling, Elsevier, vol. 221(3), pages 445-452.
    9. Brown, Mark T. & Ulgiati, Sergio, 2016. "Emergy assessment of global renewable sources," Ecological Modelling, Elsevier, vol. 339(C), pages 148-156.
    10. Xingguo Gu & Ying Wang & Keyi Shi & Fuyan Ke & Shanting Ying & Qixian Lai, 2022. "Emergy-Based Sustainability Evaluation of the Mulberry-Dyke and Fish-Pond System on the South Bank of Taihu Lake, China," Sustainability, MDPI, vol. 14(17), pages 1-17, August.
    11. Ehrich, Melinda K. & Harris, Lora A., 2015. "A review of existing eastern oyster filtration rate models," Ecological Modelling, Elsevier, vol. 297(C), pages 201-212.
    12. Wang, Xiaolong & Chen, Yuanquan & Sui, Peng & Gao, Wangsheng & Qin, Feng & Zhang, Jiansheng & Wu, Xia, 2014. "Emergy analysis of grain production systems on large-scale farms in the North China Plain based on LCA," Agricultural Systems, Elsevier, vol. 128(C), pages 66-78.
    13. Brown, Mark T. & Ulgiati, Sergio, 2016. "Assessing the global environmental sources driving the geobiosphere: A revised emergy baseline," Ecological Modelling, Elsevier, vol. 339(C), pages 126-132.
    14. Liu, Ta-Kang & Kao, Jui-Chuang & Chen, Ping, 2015. "Tragedy of the unwanted commons: Governing the marine debris in Taiwan’s oyster farming," Marine Policy, Elsevier, vol. 53(C), pages 123-130.
    15. Shaohui Liu & Qingwen Min & Wenjun Jiao & Chuanjiang Liu & Jianzhong Yin, 2018. "Integrated Emergy and Economic Evaluation of Huzhou Mulberry-Dyke and Fish-Pond Systems," Sustainability, MDPI, vol. 10(11), pages 1-11, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lyu, Yanfeng & Raugei, Marco & Zhang, Xiaohong & Mellino, Salvatore & Ulgiati, Sergio, 2021. "Environmental cost and impacts of chemicals used in agriculture: An integration of emergy and Life Cycle Assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    2. Cristiano, S. & Ulgiati, S. & Gonella, F., 2021. "Systemic sustainability and resilience assessment of health systems, addressing global societal priorities: Learnings from a top nonprofit hospital in a bioclimatic building in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    3. Lee, Dong Joo & Brown, Mark T., 2021. "Estimating the Value of Global Ecosystem Structure and Productivity: A Geographic Information System and Emergy Based Approach," Ecological Modelling, Elsevier, vol. 439(C).
    4. Miguel Angel Avalos-Rangel & Daniel E. Campbell & Delfino Reyes-López & Rolando Rueda-Luna & Ricardo Munguía-Pérez & Manuel Huerta-Lara, 2021. "The Environmental-Economic Performance of a Poblano Family Milpa System: An Emergy Evaluation," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    5. Xingguo Gu & Qixian Lai & Moucheng Liu & Ziqun He & Qingyang Zhang & Qingwen Min, 2019. "Sustainability Assessment of a Qingyuan Mushroom Culture System Based on Emergy," Sustainability, MDPI, vol. 11(18), pages 1-13, September.
    6. Xiang, Qing & Pan, Hengyu & Ma, Xiaohan & Yang, Mingdong & Lyu, Yanfeng & Zhang, Xiaohong & Shui, Wei & Liao, Wenjie & Xiao, Yinlong & Wu, Jun & Zhang, Yanzong & Xu, Min, 2024. "Impacts of energy-saving and emission-reduction on sustainability of cement production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    7. Mattei, F. & Buonocore, E. & Franzese, P.P. & Scardi, M., 2021. "Global assessment of marine phytoplankton primary production: Integrating machine learning and environmental accounting models," Ecological Modelling, Elsevier, vol. 451(C).
    8. Ulgiati, Sergio & Zucaro, Amalia & Franzese, Pier Paolo, 2011. "Shared wealth or nobody's land? The worth of natural capital and ecosystem services," Ecological Economics, Elsevier, vol. 70(4), pages 778-787, February.
    9. Yinan Xu & Yingxing Zhao & Peng Sui & Wangsheng Gao & Zhijun Li & Yuanquan Chen, 2021. "Emergy-Based Evaluation on the Systemic Sustainability of Rural Ecosystem under China Poverty Alleviation and Rural Revitalization: A Case of the Village in North China," Energies, MDPI, vol. 14(13), pages 1-16, July.
    10. Qingsong Wang & Hongkun Xiao & Qiao Ma & Xueliang Yuan & Jian Zuo & Jian Zhang & Shuguang Wang & Mansen Wang, 2020. "Review of Emergy Analysis and Life Cycle Assessment: Coupling Development Perspective," Sustainability, MDPI, vol. 12(1), pages 1-13, January.
    11. Zhicheng Gao & Rongjin Wan & Qian Ye & Weiguo Fan & Shihui Guo & Sergio Ulgiati & Xiaobin Dong, 2020. "Typhoon Disaster Risk Assessment Based on Emergy Theory: A Case Study of Zhuhai City, Guangdong Province, China," Sustainability, MDPI, vol. 12(10), pages 1-15, May.
    12. Sun, Yufeng & Yang, Bin & Wang, Yapeng & Zheng, Zipeng & Wang, Jinwei & Yue, Yaping & Mu, Wenlong & Xu, Guangyin & Jilai Ying,, 2023. "Emergy evaluation of biogas production system in China from perspective of collection radius," Energy, Elsevier, vol. 265(C).
    13. Xingguo Gu & Ying Wang & Keyi Shi & Fuyan Ke & Shanting Ying & Qixian Lai, 2022. "Emergy-Based Sustainability Evaluation of the Mulberry-Dyke and Fish-Pond System on the South Bank of Taihu Lake, China," Sustainability, MDPI, vol. 14(17), pages 1-17, August.
    14. Siegel, Eric & Brown, Mark T. & De Vilbiss, Chris & Arden, Sam, 2016. "Calculating solar equivalence ratios of the four major heat-producing radiogenic isotopes in the Earth's crust and mantle," Ecological Modelling, Elsevier, vol. 339(C), pages 140-147.
    15. Agostinho, Feni & Bertaglia, Ana B.B. & Almeida, Cecília M.V.B. & Giannetti, Biagio F., 2015. "Influence of cellulase enzyme production on the energetic–environmental performance of lignocellulosic ethanol," Ecological Modelling, Elsevier, vol. 315(C), pages 46-56.
    16. Chen, Yangfan & Zhang, Xiaohong, 2021. "Investigating the interactions between Chinese economic growth, energy consumption and its air environmental cost during 1989–2016 and forecasting their future trends," Ecological Modelling, Elsevier, vol. 461(C).
    17. Brown, Mark T. & Ulgiati, Sergio, 2016. "Emergy assessment of global renewable sources," Ecological Modelling, Elsevier, vol. 339(C), pages 148-156.
    18. Huang, Shupei & An, Haizhong & Viglia, Silvio & Fiorentino, Gabriella & Corcelli, Fabiana & Fang, Wei & Ulgiati, Sergio, 2018. "Terrestrial transport modalities in China concerning monetary, energy and environmental costs," Energy Policy, Elsevier, vol. 122(C), pages 129-141.
    19. Jia He & Yi Li & Lianjun Zhang & Junyin Tan & Chuanhao Wen, 2021. "A County-Scale Spillover Ecological Value Compensation Standard of Ecological Barrier Area in China: Based on an Extended Emergy Analysis," Agriculture, MDPI, vol. 11(12), pages 1-26, November.
    20. Liu, Gengyuan & Hao, Yan & Dong, Liang & Yang, Zhifeng & Zhang, Yan & Ulgiati, Sergio, 2017. "An emergy-LCA analysis of municipal solid waste management," Resources, Conservation & Recycling, Elsevier, vol. 120(C), pages 131-143.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:13876-:d:953069. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.