IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v339y2016icp148-156.html
   My bibliography  Save this article

Emergy assessment of global renewable sources

Author

Listed:
  • Brown, Mark T.
  • Ulgiati, Sergio

Abstract

The empower that is derived from solar, geothermal and tidal sources drives the productive processes of the geobiosphere and is responsible for developing exergy gradients (work potential) to be transformed into secondary exergy sources (wind, and chemical potential of rain water) and tertiary sources (chemical and geopotential energy of river discharges and the available energy of breaking waves). In this paper we use the geobiosphere emergy baseline (GEB) to compute transformities for secondary and tertiary renewable exergy sources. We also refine methods used to compute secondary and tertiary sources.

Suggested Citation

  • Brown, Mark T. & Ulgiati, Sergio, 2016. "Emergy assessment of global renewable sources," Ecological Modelling, Elsevier, vol. 339(C), pages 148-156.
  • Handle: RePEc:eee:ecomod:v:339:y:2016:i:c:p:148-156
    DOI: 10.1016/j.ecolmodel.2016.03.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380016300692
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2016.03.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Campbell, Daniel E., 2016. "Emergy baseline for the Earth: A historical review of the science and a new calculation," Ecological Modelling, Elsevier, vol. 339(C), pages 96-125.
    2. Brown, Mark T. & Ulgiati, Sergio, 2016. "Assessing the global environmental sources driving the geobiosphere: A revised emergy baseline," Ecological Modelling, Elsevier, vol. 339(C), pages 126-132.
    3. Brown, Mark T. & Campbell, Daniel E. & De Vilbiss, Christopher & Ulgiati, Sergio, 2016. "The geobiosphere emergy baseline: A synthesis," Ecological Modelling, Elsevier, vol. 339(C), pages 92-95.
    4. Brown, Mark T. & Ulgiati, Sergio, 2010. "Updated evaluation of exergy and emergy driving the geobiosphere: A review and refinement of the emergy baseline," Ecological Modelling, Elsevier, vol. 221(20), pages 2501-2508.
    5. Zarbá, Lucía & Brown, Mark T., 2015. "Cycling emergy: computing emergy in trophic networks," Ecological Modelling, Elsevier, vol. 315(C), pages 37-45.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Siegel, Eric & Brown, Mark T. & De Vilbiss, Chris & Arden, Sam, 2016. "Calculating solar equivalence ratios of the four major heat-producing radiogenic isotopes in the Earth's crust and mantle," Ecological Modelling, Elsevier, vol. 339(C), pages 140-147.
    2. Berrios, Fernando & Campbell, Daniel E. & Ortiz, Marco, 2017. "Emergy evaluation of benthic ecosystems influenced by upwelling in northern Chile: Contributions of the ecosystems to the regional economy," Ecological Modelling, Elsevier, vol. 359(C), pages 146-164.
    3. Lee, Dong Joo & Brown, Mark T., 2021. "Estimating the Value of Global Ecosystem Structure and Productivity: A Geographic Information System and Emergy Based Approach," Ecological Modelling, Elsevier, vol. 439(C).
    4. Zhicheng Gao & Rongjin Wan & Qian Ye & Weiguo Fan & Shihui Guo & Sergio Ulgiati & Xiaobin Dong, 2020. "Typhoon Disaster Risk Assessment Based on Emergy Theory: A Case Study of Zhuhai City, Guangdong Province, China," Sustainability, MDPI, vol. 12(10), pages 1-15, May.
    5. Duian Lu & Jie Cheng & Zhenzhou Feng & Li Sun & Wei Mo & Degang Wang, 2022. "Emergy Synthesis of Two Oyster Aquaculture Systems in Zhejiang Province, China," Sustainability, MDPI, vol. 14(21), pages 1-20, October.
    6. Ren, Siyue & Feng, Xiao, 2021. "Emergy evaluation of ladder hydropower generation systems in the middle and lower reaches of the Lancang River," Renewable Energy, Elsevier, vol. 169(C), pages 1038-1050.
    7. Chen, Yangfan & Zhang, Xiaohong, 2021. "Investigating the interactions between Chinese economic growth, energy consumption and its air environmental cost during 1989–2016 and forecasting their future trends," Ecological Modelling, Elsevier, vol. 461(C).
    8. Huang, Shupei & An, Haizhong & Viglia, Silvio & Fiorentino, Gabriella & Corcelli, Fabiana & Fang, Wei & Ulgiati, Sergio, 2018. "Terrestrial transport modalities in China concerning monetary, energy and environmental costs," Energy Policy, Elsevier, vol. 122(C), pages 129-141.
    9. Jia He & Yi Li & Lianjun Zhang & Junyin Tan & Chuanhao Wen, 2021. "A County-Scale Spillover Ecological Value Compensation Standard of Ecological Barrier Area in China: Based on an Extended Emergy Analysis," Agriculture, MDPI, vol. 11(12), pages 1-26, November.
    10. Liu, Gengyuan & Hao, Yan & Dong, Liang & Yang, Zhifeng & Zhang, Yan & Ulgiati, Sergio, 2017. "An emergy-LCA analysis of municipal solid waste management," Resources, Conservation & Recycling, Elsevier, vol. 120(C), pages 131-143.
    11. Brown, Mark T. & Campbell, Daniel E. & De Vilbiss, Christopher & Ulgiati, Sergio, 2016. "The geobiosphere emergy baseline: A synthesis," Ecological Modelling, Elsevier, vol. 339(C), pages 92-95.
    12. Xiaoyu Xu, 2021. "Multi-System Urban Waste-Energy Self-Circulation: Design of Urban Self-Circulation System Based on Emergy Analysis," IJERPH, MDPI, vol. 18(14), pages 1-26, July.
    13. Lyu, Yanfeng & Raugei, Marco & Zhang, Xiaohong & Mellino, Salvatore & Ulgiati, Sergio, 2021. "Environmental cost and impacts of chemicals used in agriculture: An integration of emergy and Life Cycle Assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    14. Paolo Vassallo & Claudia Turcato & Ilaria Rigo & Claudia Scopesi & Andrea Costa & Matteo Barcella & Giulia Dapueto & Mauro Mariotti & Chiara Paoli, 2021. "Biophysical Accounting of Forests’ Value under Different Management Regimes: Conservation vs. Exploitation," Sustainability, MDPI, vol. 13(9), pages 1-20, April.
    15. Chen, Qiuwen & Ma, Xiaohan & Hu, Jiayu & Zhang, Xiaohong, 2023. "Comparison of comprehensive performance of kiwifruit production in China, Iran, and Italy based on emergy and carbon emissions," Ecological Modelling, Elsevier, vol. 483(C).
    16. Vitória Toffolo Luiz & Rafael Araújo Nacimento & Vanessa Theodoro Rezende & Taynara Freitas Avelar de Almeida & Juliana Vieira Paz & Biagio Fernando Giannetti & Augusto Hauber Gameiro, 2023. "Sustainability Assessment of Intensification Levels of Brazilian Smallholder Integrated Dairy-Crop Production Systems: An Emergy and Economic-Based Decision Approach," Sustainability, MDPI, vol. 15(5), pages 1-20, March.
    17. Xiang, Qing & Pan, Hengyu & Ma, Xiaohan & Yang, Mingdong & Lyu, Yanfeng & Zhang, Xiaohong & Shui, Wei & Liao, Wenjie & Xiao, Yinlong & Wu, Jun & Zhang, Yanzong & Xu, Min, 2024. "Impacts of energy-saving and emission-reduction on sustainability of cement production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    18. Cristiano, S. & Ulgiati, S. & Gonella, F., 2021. "Systemic sustainability and resilience assessment of health systems, addressing global societal priorities: Learnings from a top nonprofit hospital in a bioclimatic building in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    19. Pan, Hengyu & Geng, Yong & Jiang, Ping & Dong, Huijuan & Sun, Lu & Wu, Rui, 2018. "An emergy based sustainability evaluation on a combined landfill and LFG power generation system," Energy, Elsevier, vol. 143(C), pages 310-322.
    20. Mattei, F. & Buonocore, E. & Franzese, P.P. & Scardi, M., 2021. "Global assessment of marine phytoplankton primary production: Integrating machine learning and environmental accounting models," Ecological Modelling, Elsevier, vol. 451(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:339:y:2016:i:c:p:148-156. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.