IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i21p13746-d951302.html
   My bibliography  Save this article

Effects of Climate and Land Use Change on Agricultural Water Consumption in Baicheng County

Author

Listed:
  • Qin Zhang

    (College of Hydraulic and Civil Engineering, Xinjiang Agricultural University, Urumqi 830052, China
    Xinjiang Key Laboratory of Hydraulic Engineering Security and Water Disasters Prevention, Xinjiang Agricultural University, Urumqi 830052, China)

  • Chunfang Yue

    (College of Hydraulic and Civil Engineering, Xinjiang Agricultural University, Urumqi 830052, China
    Xinjiang Key Laboratory of Hydraulic Engineering Security and Water Disasters Prevention, Xinjiang Agricultural University, Urumqi 830052, China)

  • Yizhen Li

    (State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
    Chinese Academy of Sciences, Beijing 100049, China)

  • Xin Hu

    (College of Hydraulic and Civil Engineering, Xinjiang Agricultural University, Urumqi 830052, China
    Xinjiang Key Laboratory of Hydraulic Engineering Security and Water Disasters Prevention, Xinjiang Agricultural University, Urumqi 830052, China)

Abstract

Changes in climate and land type directly affect the transformation and utilization of regional water resources. To analyze the evolutionary characteristics and drivers of agricultural water consumption (AWC) in arid regions, the Baicheng County is selected as an example. Based on the meteorological and land use/cover data from 1990 to 2020, the Penman–Monteith model and sensitivity method were used for analysis. The results show that: (1) The water consumption of major crops during the growth period was increasing, which was caused by climate change and changes in agricultural planting structure. (2) The sensitivity of AWC to meteorological factors was as follows: mean temperature (1.56) > mean wind speed (0.6) > precipitation (−0.12) > sunshine duration (−0.06). Temperature and wind speed were the dominant factors contributing to increased water consumption in oasis agriculture. (3) The change in land type was more obvious, mainly in cultivated land and urban and rural residential land with obvious growth, while the area of water area, forestland, and grassland showed a decreasing trend. In the past 30 years, the increase in cultivated land has reached 24.32%. The increase in cultivated land area was an important reason for the increase in AWC.

Suggested Citation

  • Qin Zhang & Chunfang Yue & Yizhen Li & Xin Hu, 2022. "Effects of Climate and Land Use Change on Agricultural Water Consumption in Baicheng County," Sustainability, MDPI, vol. 14(21), pages 1-13, October.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:13746-:d:951302
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/21/13746/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/21/13746/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tong, Ling & Kang, Shaozhong & Zhang, Lu, 2007. "Temporal and spatial variations of evapotranspiration for spring wheat in the Shiyang river basin in northwest China," Agricultural Water Management, Elsevier, vol. 87(3), pages 241-250, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tongtong Zhao & Bo Shao, 2022. "Domestic Water Consumption and Its Influencing Factors in the Yellow River Basin Based on Logarithmic Mean Divisia Index and Decoupling Theory," Sustainability, MDPI, vol. 14(24), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Xiaolin & Gao, Wangsheng & Shi, Quanhong & Chen, Fu & Chu, Qingquan, 2013. "Impact of climate change on the water requirement of summer maize in the Huang-Huai-Hai farming region," Agricultural Water Management, Elsevier, vol. 124(C), pages 20-27.
    2. Jinping Zhang & Yong Zhao & Weihua Xiao, 2014. "Study on Markov Joint Transition Probability and Encounter Probability of Rainfall and Reference Crop Evapotranspiration in the Irrigation District," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(15), pages 5543-5553, December.
    3. Zhou, Hong & Zhao, Wen zhi, 2019. "Modeling soil water balance and irrigation strategies in a flood-irrigated wheat-maize rotation system. A case in dry climate, China," Agricultural Water Management, Elsevier, vol. 221(C), pages 286-302.
    4. Jiang, Shouzheng & Liang, Chuan & Cui, Ningbo & Zhao, Lu & Du, Taisheng & Hu, Xiaotao & Feng, Yu & Guan, Jing & Feng, Yi, 2019. "Impacts of climatic variables on reference evapotranspiration during growing season in Southwest China," Agricultural Water Management, Elsevier, vol. 216(C), pages 365-378.
    5. Nam, Won-Ho & Hong, Eun-Mi & Choi, Jin-Yong, 2015. "Has climate change already affected the spatial distribution and temporal trends of reference evapotranspiration in South Korea?," Agricultural Water Management, Elsevier, vol. 150(C), pages 129-138.
    6. Fan, Yubing & Wang, Chenggang & Nan, Zhibiao, 2018. "Determining water use efficiency of wheat and cotton: A meta-regression analysis," Agricultural Water Management, Elsevier, vol. 199(C), pages 48-60.
    7. Li, Zhou & Quan, Jin & Li, Xiao-Yan & Wu, Xiu-Chen & Wu, Hua-Wu & Li, Yue-Tan & Li, Guang-Yong, 2016. "Establishing a model of conjunctive regulation of surface water and groundwater in the arid regions," Agricultural Water Management, Elsevier, vol. 174(C), pages 30-38.
    8. Zhang, Xiaotao & Kang, Shaozhong & Zhang, Lu & Liu, Junqi, 2010. "Spatial variation of climatology monthly crop reference evapotranspiration and sensitivity coefficients in Shiyang river basin of northwest China," Agricultural Water Management, Elsevier, vol. 97(10), pages 1506-1516, October.
    9. Feilong Jie & Liangjun Fei & Shan Li & Kun Hao & Lihua Liu & Youliang Peng, 2022. "Effects on Net Irrigation Water Requirement of Joint Distribution of Precipitation and Reference Evapotranspiration," Agriculture, MDPI, vol. 12(6), pages 1-16, June.
    10. Fan, Yubing & Wang, Chenggang & Nan, Zhibiao, 2016. "Determining water use efficiency for wheat and cotton: A meta-regression analysis," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 236059, Agricultural and Applied Economics Association.
    11. Wang, Chenxia & Gu, Feng & Chen, Jinliang & Yang, Hui & Jiang, Jingjing & Du, Taisheng & Zhang, Jianhua, 2015. "Assessing the response of yield and comprehensive fruit quality of tomato grown in greenhouse to deficit irrigation and nitrogen application strategies," Agricultural Water Management, Elsevier, vol. 161(C), pages 9-19.
    12. Jiang, Yao & Xu, Xu & Huang, Quanzhong & Huo, Zailin & Huang, Guanhua, 2015. "Assessment of irrigation performance and water productivity in irrigated areas of the middle Heihe River basin using a distributed agro-hydrological model," Agricultural Water Management, Elsevier, vol. 147(C), pages 67-81.
    13. Tang, Bo & Tong, Ling & Kang, Shaozhong & Zhang, Lu, 2011. "Impacts of climate variability on reference evapotranspiration over 58 years in the Haihe river basin of north China," Agricultural Water Management, Elsevier, vol. 98(10), pages 1660-1670, August.
    14. Li, Jiang & Song, Jian & Li, Mo & Shang, Songhao & Mao, Xiaomin & Yang, Jian & Adeloye, Adebayo J., 2018. "Optimization of irrigation scheduling for spring wheat based on simulation-optimization model under uncertainty," Agricultural Water Management, Elsevier, vol. 208(C), pages 245-260.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:13746-:d:951302. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.