IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i20p13663-d949670.html
   My bibliography  Save this article

Modeling the Level of Drinking Water Clarity in Surabaya City Drinking Water Regional Company Using Combined Estimation of Multivariable Fourier Series and Kernel

Author

Listed:
  • Andi Tenri Ampa

    (Department of Statistic, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
    Department of Statistic, Halu Oleo University, Kendari 93132, Indonesia)

  • I Nyoman Budiantara

    (Department of Statistic, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia)

  • Ismaini Zain

    (Department of Statistic, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia)

Abstract

The purpose of this study is to propose an appropriate model to predict chemical composition during water purification at the Regional Water Company (PDAM) Surabaya, in order to achieve proper drinking water standards. Drinking water treatment is very expensive, so the model serves as a basis for determining the composition of chemicals used in the water purification process at PDAM Surabaya. This study examines a model of the relationship between the level of clarity of drinking water and the composition of the chemicals used. The government can obtain important benefits from the forecasting model to formulate policies for the company. One of the objectives of developing the estimation method involved in this research is to efficiently determine the exact chemical composition resulting from the water purification process, which will inform the financing and control of water quality. We used a multivariable linear approach for some parametric components, a multivariable Fourier Series approach for some nonparametric components, and a multivariable Kernel approach for semiparametric regression. Using the penalized least square (PLS) approach, a mixed estimator of the Fourier and Kernel Series was obtained with semiparametric regression. The smoothing parameters were selected using a common cross-validation technique (GCV). The performance of this technique was evaluated using the Gaussian Kernel and Fourier Series with data trends in the drinking water clarity level obtained from PDAM Surabaya. The findings showed that this technique performed well, so we recommend that the government conduct an in-depth analysis to determine correct chemical composition so that the cost of water treatment can be minimized.

Suggested Citation

  • Andi Tenri Ampa & I Nyoman Budiantara & Ismaini Zain, 2022. "Modeling the Level of Drinking Water Clarity in Surabaya City Drinking Water Regional Company Using Combined Estimation of Multivariable Fourier Series and Kernel," Sustainability, MDPI, vol. 14(20), pages 1-12, October.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:20:p:13663-:d:949670
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/20/13663/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/20/13663/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Smith, Michael & Kohn, Robert & Mathur, Sharat K., 2000. "Bayesian Semiparametric Regression: An Exposition and Application to Print Advertising Data," Journal of Business Research, Elsevier, vol. 49(3), pages 229-244, September.
    2. Okumura, Hidenori & Naito, Kanta, 2006. "Non-parametric kernel regression for multinomial data," Journal of Multivariate Analysis, Elsevier, vol. 97(9), pages 2009-2022, October.
    3. Manzan, Sebastiano & Zerom, Dawit, 2005. "Kernel estimation of a partially linear additive model," Statistics & Probability Letters, Elsevier, vol. 72(4), pages 313-322, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chuan-hua Wei & Chunling Liu, 2012. "Statistical inference on semi-parametric partial linear additive models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(4), pages 809-823, December.
    2. Chuanhua Wei & Yubo Luo & Xizhi Wu, 2012. "Empirical likelihood for partially linear additive errors-in-variables models," Statistical Papers, Springer, vol. 53(2), pages 485-496, May.
    3. Chuanhua Wei & Jin Yang, 2020. "Stochastic restricted estimation in partially linear additive errors-in-variables models," Statistical Papers, Springer, vol. 61(3), pages 1269-1279, June.
    4. Yebin Cheng & Jan G. De Gooijer & Dawit Zerom, 2011. "Efficient Estimation of an Additive Quantile Regression Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 38(1), pages 46-62, March.
    5. Danaher, Peter J. & Dagger, Tracey S. & Smith, Michael S., 2011. "Forecasting television ratings," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1215-1240, October.
    6. Xin Geng & Carlos Martins-Filho & Feng Yao, 2015. "Estimation of a Partially Linear Regression in Triangular Systems," Working Papers 15-46, Department of Economics, West Virginia University.
    7. Boente, Graciela & Martínez, Alejandra Mercedes, 2023. "A robust spline approach in partially linear additive models," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
    8. Huhmann, Bruce A. & Franke, George R. & Mothersbaugh, David L., 2012. "Print advertising: Executional factors and the RPB Grid," Journal of Business Research, Elsevier, vol. 65(6), pages 849-854.
    9. Manzan, sebastiano & Zerom, Dawit, 2008. "A Semiparametric Analysis of Gasoline Demand in the US: Reexamining The Impact of Price," MPRA Paper 14386, University Library of Munich, Germany.
    10. Deniz Ozabaci & Daniel Henderson, 2015. "Additive kernel estimates of returns to schooling," Empirical Economics, Springer, vol. 48(1), pages 227-251, February.
    11. Jianbao Chen & Suli Cheng, 2021. "GMM Estimation of a Partially Linear Additive Spatial Error Model," Mathematics, MDPI, vol. 9(6), pages 1-28, March.
    12. Peter J. Danaher & Michael S. Smith, 2011. "Modeling Multivariate Distributions Using Copulas: Applications in Marketing," Marketing Science, INFORMS, vol. 30(1), pages 4-21, 01-02.
    13. Chuanhua Wei & Qihua Wang, 2012. "Statistical inference on restricted partially linear additive errors-in-variables models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(4), pages 757-774, December.
    14. Rui Li & Yuanyuan Zhang, 2021. "Two-stage estimation and simultaneous confidence band in partially nonlinear additive model," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(8), pages 1109-1140, November.
    15. Chuanhua Wei & Xiaonan Wang, 2016. "Liu-type estimator in semiparametric partially linear additive models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(3), pages 459-468, September.
    16. Holland, Ashley D., 2017. "Penalized spline estimation in the partially linear model," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 211-235.
    17. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    18. Cheng, Suli & Chen, Jianbao, 2023. "GMM estimation of partially linear additive spatial autoregressive model," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:20:p:13663-:d:949670. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.