IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v97y2006i9p2009-2022.html
   My bibliography  Save this article

Non-parametric kernel regression for multinomial data

Author

Listed:
  • Okumura, Hidenori
  • Naito, Kanta

Abstract

This paper presents a kernel smoothing method for multinomial regression. A class of estimators of the regression functions is constructed by minimizing a localized power-divergence measure. These estimators include the bandwidth and a single parameter originating in the power-divergence measure as smoothing parameters. An asymptotic theory for the estimators is developed and the bias-adjusted estimators are obtained. A data-based algorithm for selecting the smoothing parameters is also proposed. Simulation results reveal that the proposed algorithm works efficiently.

Suggested Citation

  • Okumura, Hidenori & Naito, Kanta, 2006. "Non-parametric kernel regression for multinomial data," Journal of Multivariate Analysis, Elsevier, vol. 97(9), pages 2009-2022, October.
  • Handle: RePEc:eee:jmvana:v:97:y:2006:i:9:p:2009-2022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(06)00084-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Naito, Kanta, 2001. "On a certain class of nonparametric density estimators with reduced bias," Statistics & Probability Letters, Elsevier, vol. 51(1), pages 71-78, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andi Tenri Ampa & I Nyoman Budiantara & Ismaini Zain, 2022. "Modeling the Level of Drinking Water Clarity in Surabaya City Drinking Water Regional Company Using Combined Estimation of Multivariable Fourier Series and Kernel," Sustainability, MDPI, vol. 14(20), pages 1-12, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Naito, Kanta & Yoshizaki, Masahiro, 2009. "Bandwidth selection for a data sharpening estimator in nonparametric regression," Journal of Multivariate Analysis, Elsevier, vol. 100(7), pages 1465-1486, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:97:y:2006:i:9:p:2009-2022. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.