IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i20p13559-d948201.html
   My bibliography  Save this article

A Hybrid Fuzzy MCDM Methodology for Optimal Structural System Selection Compatible with Sustainable Materials in Mass-Housing Projects

Author

Listed:
  • Ebrahim Aghazadeh

    (Department of Civil Engineering, Istanbul Technical University, 34469 İstanbul, Turkey)

  • Hasan Yildirim

    (Department of Civil Engineering, Istanbul Technical University, 34469 İstanbul, Turkey)

  • Murat Kuruoglu

    (Department of Civil Engineering, Istanbul Technical University, 34469 İstanbul, Turkey)

Abstract

The present paper aimed to propose a new support approach to choosing the optimal structural system in accordance with sustainable materials in mass-housing projects. To this end, an integrated fuzzy multi-criteria-decision-making (fuzzy MCDM) method was used to identify the criteria affecting sustainable material selection. The proposed approach consists of a three-phase protocol: In phase I, the literature was used to create a database encompassing 42 factors affecting the selection of materials. These factors were classified as four indicators (economic, environmental, socio-cultural, technical-executive) in accordance with the sustainable development aspects. In phase II, the fuzzy Delphi method (FDM) was used to screen the key factors. In phase III, an integrated fuzzy SWARA–ARAS method was used to prioritize the optimal structural system for a case project: evidence from Iran. The results of selecting the structural systems based on 14 efficient key factors showed that the Light Steel Frame (LSF), Insulation Concrete framework (ICF), and the Prefabricated Reinforced Concrete System (PRC) systems have the highest priority to achieve the goals of sustainable material selection, respectively.

Suggested Citation

  • Ebrahim Aghazadeh & Hasan Yildirim & Murat Kuruoglu, 2022. "A Hybrid Fuzzy MCDM Methodology for Optimal Structural System Selection Compatible with Sustainable Materials in Mass-Housing Projects," Sustainability, MDPI, vol. 14(20), pages 1-22, October.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:20:p:13559-:d:948201
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/20/13559/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/20/13559/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ayyildiz, Ertugrul, 2022. "Fermatean fuzzy step-wise Weight Assessment Ratio Analysis (SWARA) and its application to prioritizing indicators to achieve sustainable development goal-7," Renewable Energy, Elsevier, vol. 193(C), pages 136-148.
    2. Rowe, Gene & Wright, George, 1999. "The Delphi technique as a forecasting tool: issues and analysis," International Journal of Forecasting, Elsevier, vol. 15(4), pages 353-375, October.
    3. Seyed Morteza Hatefi & Hamideh Asadi & Gholamreza Shams & Jolanta Tamošaitienė & Zenonas Turskis, 2021. "Model for the Sustainable Material Selection by Applying Integrated Dempster-Shafer Evidence Theory and Additive Ratio Assessment (ARAS) Method," Sustainability, MDPI, vol. 13(18), pages 1-23, September.
    4. Norman Dalkey & Olaf Helmer, 1963. "An Experimental Application of the DELPHI Method to the Use of Experts," Management Science, INFORMS, vol. 9(3), pages 458-467, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adnan Veysel Ertemel & Akin Menekse & Hatice Camgoz Akdag, 2023. "Smartphone Addiction Assessment Using Pythagorean Fuzzy CRITIC-TOPSIS," Sustainability, MDPI, vol. 15(5), pages 1-19, February.
    2. Germán Álvarez-López & Alejandra María Múnera & Juan G. Villegas, 2023. "Multicriteria Decision-Making Tools for the Selection of Biomasses as Supplementary Cementitious Materials," Sustainability, MDPI, vol. 15(13), pages 1-17, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Prommer, Lisa & Tiberius, Victor & Kraus, Sascha, 2020. "Exploring the future of startup leadership development," Journal of Business Venturing Insights, Elsevier, vol. 14(C).
    2. Prianto Budi Saptono & Gustofan Mahmud & Intan Pratiwi & Dwi Purwanto & Ismail Khozen & Muhamad Akbar Aditama & Siti Khodijah & Maria Eurelia Wayan & Rina Yuliastuty Asmara & Ferry Jie, 2023. "Development of Climate-Related Disclosure Indicators for Application in Indonesia: A Delphi Method Study," Sustainability, MDPI, vol. 15(14), pages 1-25, July.
    3. Di Zio, Simone & Bolzan, Mario & Marozzi, Marco, 2021. "Classification of Delphi outputs through robust ranking and fuzzy clustering for Delphi-based scenarios," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    4. Alyami, Saleh. H. & Rezgui, Yacine & Kwan, Alan, 2013. "Developing sustainable building assessment scheme for Saudi Arabia: Delphi consultation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 43-54.
    5. Georg Aichholzer, 2002. "Das ExpertInnen-Delphi: methodische Grundlagen und Anwendungsfeld ‘Technology Foresight‘ (The Expert Delphi: Methodology and Application in 'Technology Foresight')," ITA manu:scripts 02_01, Institute of Technology Assessment (ITA).
    6. Hayes, Tom, 2007. "Delphi study of the future of marketing of higher education," Journal of Business Research, Elsevier, vol. 60(9), pages 927-931, September.
    7. Haarhaus, Tim & Liening, Andreas, 2020. "Building dynamic capabilities to cope with environmental uncertainty: The role of strategic foresight," Technological Forecasting and Social Change, Elsevier, vol. 155(C).
    8. Ribeiro, Barbara E. & Quintanilla, Miguel A., 2015. "Transitions in biofuel technologies: An appraisal of the social impacts of cellulosic ethanol using the Delphi method," Technological Forecasting and Social Change, Elsevier, vol. 92(C), pages 53-68.
    9. Yeh, Duen-Yian & Cheng, Ching-Hsue, 2015. "Recommendation system for popular tourist attractions in Taiwan using Delphi panel and repertory grid techniques," Tourism Management, Elsevier, vol. 46(C), pages 164-176.
    10. Hsin-Ke Lu & Sung-Chun Tsai & Peng-Chun Lin & Kuo-Chung Chu & Alexander N. Chen, 2020. "Toward a New Real-Time Approach for Group Consensus: A Usability Analysis of Synchronous Delphi System," Group Decision and Negotiation, Springer, vol. 29(2), pages 345-370, April.
    11. Torres-Sibille, Ana del Carmen & Cloquell-Ballester, Vicente-Agustín & Cloquell-Ballester, Víctor-Andrés & Artacho Ramírez, Miguel Ángel, 2009. "Aesthetic impact assessment of solar power plants: An objective and a subjective approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 986-999, June.
    12. Laura Studen & Victor Tiberius, 2020. "Social Media, Quo Vadis? Prospective Development and Implications," Future Internet, MDPI, vol. 12(9), pages 1-22, August.
    13. Volkmar, Gioia & Fischer, Peter M. & Reinecke, Sven, 2022. "Artificial Intelligence and Machine Learning: Exploring drivers, barriers, and future developments in marketing management," Journal of Business Research, Elsevier, vol. 149(C), pages 599-614.
    14. Kawamoto, Carlos Tadao & Wright, James Terence Coulter & Spers, Renata Giovinazzo & de Carvalho, Daniel Estima, 2019. "Can we make use of perception of questions' easiness in Delphi-like studies? Some results from an experiment with an alternative feedback," Technological Forecasting and Social Change, Elsevier, vol. 140(C), pages 296-305.
    15. Meijering, Jurian Vincent & Tobi, Hilde, 2018. "The effects of feeding back experts’ own initial ratings in Delphi studies: A randomized trial," International Journal of Forecasting, Elsevier, vol. 34(2), pages 216-224.
    16. Paméla Baillette & Bernard Fallery, 2016. "La méthode du Delphi argumentaire, une innovation managériale dans le cadre d'un projet complexe," Post-Print hal-02160359, HAL.
    17. Förster, Bernadette & von der Gracht, Heiko, 2014. "Assessing Delphi panel composition for strategic foresight — A comparison of panels based on company-internal and external participants," Technological Forecasting and Social Change, Elsevier, vol. 84(C), pages 215-229.
    18. Torres Sibille, Ana del Carmen & Cloquell-Ballester, Víctor-Andrés & Cloquell-Ballester, Vicente-Agustín & Darton, Richard, 2009. "Development and validation of a multicriteria indicator for the assessment of objective aesthetic impact of wind farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(1), pages 40-66, January.
    19. Fritschy, Carolin & Spinler, Stefan, 2019. "The impact of autonomous trucks on business models in the automotive and logistics industry–a Delphi-based scenario study," Technological Forecasting and Social Change, Elsevier, vol. 148(C).
    20. Contadini, Jose F., 2002. "Life Cycle Assessment of Fuel Cell Vehicles - Dealing with Uncertainties," Institute of Transportation Studies, Working Paper Series qt9gz1s67d, Institute of Transportation Studies, UC Davis.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:20:p:13559-:d:948201. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.