IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i20p13064-d940081.html
   My bibliography  Save this article

BIM-Based Multi-Objective Optimization of Low-Carbon and Energy-Saving Buildings

Author

Listed:
  • Liang Zhao

    (School of Telecommunications Engineering, Jiangsu Vocational Institute of Architectural Technology, Xuzhou 221000, China
    Jiangsu Province Engineering Research Center of Intelligent Visual Recognition and Data Mining, Xuzhou 221000, China
    Xuzhou Intelligent Machine and Visual Application Technology Engineering Research Center, Xuzhou 221000, China
    These authors contributed equally to this work.)

  • Wei Zhang

    (Jiangsu Collaborative Innovation Center for Building Energy Saving and Construct Technology, Jiangsu Vocational Institute of Architectural Technology, Xuzhou 221116, China)

  • Wenshun Wang

    (School of Mechanics & Civil Engineering, China University of Mining and Technology, Xuzhou 221000, China
    These authors contributed equally to this work.)

Abstract

Global warming and other environmental problems are increasing the demand for green and low-carbon buildings. The development of high-performance computers and building information models has a significant impact on low-carbon buildings. Low-carbon building design needs to comprehensively consider geography, climate, material, cost and other factors, a highly complex multidisciplinary research problem. Therefore, it is urgent to use advanced modeling and simulation technology, involving BIM, parametric design, cloud platform and evolutionary algorithm. This paper proposes a BIM based low-carbon building design optimization framework, which realizes the comprehensive trade-off function of building low-carbon energy saving and daylighting performance through an improved genetic algorithm. The framework drives BIM through parameterization and integrates building environment information, geometric information and operation information, including six parts: BIM model establishment, parameter-driven development, building performance simulation, multi-objective optimization design, Pareto frontier analysis, and energy-saving decision-making and evaluation. The case study shows that the simulation results obtained through the framework can effectively achieve building energy conservation while maximizing the lighting performance of the building, providing a scientific basis and reference for construction professionals to design low-carbon buildings. Finally, the application advantages and limitations of the framework in low-carbon building design and its application prospects in low-carbon energy-saving building design are discussed. This research has made contributions to the multi-disciplinary low-carbon energy conservation research field, realized the multi-objective optimization strategy of building performance based on BIM, genetic algorithm and simulation, and is an important supplement to existing building energy conservation and emission reduction optimization design.

Suggested Citation

  • Liang Zhao & Wei Zhang & Wenshun Wang, 2022. "BIM-Based Multi-Objective Optimization of Low-Carbon and Energy-Saving Buildings," Sustainability, MDPI, vol. 14(20), pages 1-17, October.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:20:p:13064-:d:940081
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/20/13064/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/20/13064/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Kai & Ma, Minda & Xiang, Xiwang & Feng, Wei & Ma, Zhili & Cai, Weiguang & Ma, Xin, 2022. "Carbon reduction in commercial building operations: A provincial retrospection in China," Applied Energy, Elsevier, vol. 306(PB).
    2. Mechri, Houcem Eddine & Capozzoli, Alfonso & Corrado, Vincenzo, 2010. "USE of the ANOVA approach for sensitive building energy design," Applied Energy, Elsevier, vol. 87(10), pages 3073-3083, October.
    3. Heiselberg, Per & Brohus, Henrik & Hesselholt, Allan & Rasmussen, Henrik & Seinre, Erkki & Thomas, Sara, 2009. "Application of sensitivity analysis in design of sustainable buildings," Renewable Energy, Elsevier, vol. 34(9), pages 2030-2036.
    4. Nili, Maryam & Seyedhosseini, Seyed Mohammad & Jabalameli, Mohammad Saeed & Dehghani, Ehsan, 2021. "A multi-objective optimization model to sustainable closed-loop solar photovoltaic supply chain network design: A case study in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tian, Wei & Song, Jitian & Li, Zhanyong & de Wilde, Pieter, 2014. "Bootstrap techniques for sensitivity analysis and model selection in building thermal performance analysis," Applied Energy, Elsevier, vol. 135(C), pages 320-328.
    2. Yuan, Jun & Nian, Victor & Su, Bin & Meng, Qun, 2017. "A simultaneous calibration and parameter ranking method for building energy models," Applied Energy, Elsevier, vol. 206(C), pages 657-666.
    3. Yildiz, Yusuf & Korkmaz, Koray & Göksal Özbalta, Türkan & Durmus Arsan, Zeynep, 2012. "An approach for developing sensitive design parameter guidelines to reduce the energy requirements of low-rise apartment buildings," Applied Energy, Elsevier, vol. 93(C), pages 337-347.
    4. Tian, Wei, 2013. "A review of sensitivity analysis methods in building energy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 411-419.
    5. Yıldız, Yusuf & Arsan, Zeynep Durmuş, 2011. "Identification of the building parameters that influence heating and cooling energy loads for apartment buildings in hot-humid climates," Energy, Elsevier, vol. 36(7), pages 4287-4296.
    6. Ramos Ruiz, Germán & Fernández Bandera, Carlos & Gómez-Acebo Temes, Tomás & Sánchez-Ostiz Gutierrez, Ana, 2016. "Genetic algorithm for building envelope calibration," Applied Energy, Elsevier, vol. 168(C), pages 691-705.
    7. Machairas, Vasileios & Tsangrassoulis, Aris & Axarli, Kleo, 2014. "Algorithms for optimization of building design: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 101-112.
    8. Ramkishore Singh & Dharam Buddhi & Samar Thapa & Chander Prakash & Rajesh Singh & Atul Sharma & Shane Sheoran & Kuldeep Kumar Saxena, 2022. "Sensitivity Analysis for Decisive Design Parameters for Energy and Indoor Visual Performances of a Glazed Façade Office Building," Sustainability, MDPI, vol. 14(21), pages 1-27, October.
    9. Zhao, Zeming & Li, Hangxin & Wang, Shengwei, 2022. "Identification of the key design parameters of Zero/low energy buildings and the impacts of climate and building morphology," Applied Energy, Elsevier, vol. 328(C).
    10. Singh, Ramkishore & Lazarus, I.J. & Kishore, V.V.N., 2016. "Uncertainty and sensitivity analyses of energy and visual performances of office building with external venetian blind shading in hot-dry climate," Applied Energy, Elsevier, vol. 184(C), pages 155-170.
    11. Li, Hangxin & Wang, Shengwei & Cheung, Howard, 2018. "Sensitivity analysis of design parameters and optimal design for zero/low energy buildings in subtropical regions," Applied Energy, Elsevier, vol. 228(C), pages 1280-1291.
    12. Solène Goy & François Maréchal & Donal Finn, 2020. "Data for Urban Scale Building Energy Modelling: Assessing Impacts and Overcoming Availability Challenges," Energies, MDPI, vol. 13(16), pages 1-23, August.
    13. Govindan, Kannan & Salehian, Farhad & Kian, Hadi & Hosseini, Seyed Teimoor & Mina, Hassan, 2023. "A location-inventory-routing problem to design a circular closed-loop supply chain network with carbon tax policy for achieving circular economy: An augmented epsilon-constraint approach," International Journal of Production Economics, Elsevier, vol. 257(C).
    14. Davide Coraci & Silvio Brandi & Marco Savino Piscitelli & Alfonso Capozzoli, 2021. "Online Implementation of a Soft Actor-Critic Agent to Enhance Indoor Temperature Control and Energy Efficiency in Buildings," Energies, MDPI, vol. 14(4), pages 1-26, February.
    15. Pisello, Anna Laura & Goretti, Michele & Cotana, Franco, 2012. "A method for assessing buildings’ energy efficiency by dynamic simulation and experimental activity," Applied Energy, Elsevier, vol. 97(C), pages 419-429.
    16. Lei, Nuoa & Masanet, Eric, 2020. "Statistical analysis for predicting location-specific data center PUE and its improvement potential," Energy, Elsevier, vol. 201(C).
    17. Sehyun Tak & Soomin Woo & Jiyoung Park & Sungjin Park, 2017. "Effect of the Changeable Organic Semi-Transparent Solar Cell Window on Building Energy Efficiency and User Comfort," Sustainability, MDPI, vol. 9(6), pages 1-14, June.
    18. Zou, Chenchen & Ma, Minda & Zhou, Nan & Feng, Wei & You, Kairui & Zhang, Shufan, 2023. "Toward carbon free by 2060: A decarbonization roadmap of operational residential buildings in China," Energy, Elsevier, vol. 277(C).
    19. Meng, Qinglong & Wei, Ying'an & Fan, Jingjing & Li, Yanbo & Zhao, Fan & Lei, Yu & Sun, Hang & Jiang, Le & Yu, Lingli, 2024. "Peak regulation strategies for ground source heat pump demand response of based on load forecasting: A case study of rural building in China," Renewable Energy, Elsevier, vol. 224(C).
    20. Kim, Icksung & Kim, Woohyun, 2023. "Application of market-based control with thermal energy storage system for demand limiting and real-time pricing control," Energy, Elsevier, vol. 263(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:20:p:13064-:d:940081. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.