IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i19p12875-d937279.html
   My bibliography  Save this article

A Ducted Photovoltaic Façade Unit with Forced Convection Cooling

Author

Listed:
  • Abdel Rahman Elbakheit

    (Department of Architecture and Building Science, College of Architecture and Planning, King Saud University, P.O. Box 57448, Riyadh 11574, Saudi Arabia)

  • Sahl Waheeb

    (Applied College, Umm Al-Qura University, Makkah 24382, Saudi Arabia)

  • Ahmed Mahmoud

    (Department of Architecture and Building Science, College of Architecture and Planning, King Saud University, P.O. Box 57448, Riyadh 11574, Saudi Arabia)

Abstract

This paper explores the potential of forced convection cooling in a ducted photovoltaic façade unit. Where a photovoltaic panel is backed by a 5 cm thick insulated duct at a depth of 50 cm. The potential of heat removal from the photovoltaic unit due to forced convection is investigated with a range of fan speeds from 1 m/s to 6 m/s. It is found that the ΔT between the inlet and outlet of the duct ranged from 2.6–24.6 °C. A fan speed of 4 m/s yielded the highest cooling potential by removing 550 W with a cooling efficiency of 51%. Whereas a fan speed of 6 m/s yielded the lowest mean PV cell temperature of 62.7 °C. This would improve the cell’s efficiency by 17.53%. This very experimental setup has been tested previously with natural convection cooling, which removed 529 W with a maximum efficiency of 48.98% This improves PV panel efficiency by 12.69%. The addition of heat removed and power recovered by the ducted system was 68.53% of the former (i.e., forced convection), while it was 61.67% for the latter. A 12 V DC fan with a variable speed electric circuit powered by a fraction of the PV generated power (i.e., 0.75 W) yielded better cooling that translated into nearly 19 W of further energy generation.

Suggested Citation

  • Abdel Rahman Elbakheit & Sahl Waheeb & Ahmed Mahmoud, 2022. "A Ducted Photovoltaic Façade Unit with Forced Convection Cooling," Sustainability, MDPI, vol. 14(19), pages 1-13, October.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:19:p:12875-:d:937279
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/19/12875/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/19/12875/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hamed, Tareq Abu & Alshare, Aiman & El-Khalil, Hossam, 2019. "Passive cooling of building-integrated photovolatics in desert conditions: Experiment and modeling," Energy, Elsevier, vol. 170(C), pages 131-138.
    2. Kaiser, A.S. & Zamora, B. & Mazón, R. & García, J.R. & Vera, F., 2014. "Experimental study of cooling BIPV modules by forced convection in the air channel," Applied Energy, Elsevier, vol. 135(C), pages 88-97.
    3. Barone, Giovanni & Buonomano, Annamaria & Chang, Roma & Forzano, Cesare & Giuzio, Giovanni Francesco & Mondol, Jayanta & Palombo, Adolfo & Pugsley, Adrian & Smyth, Mervyn & Zacharopoulos, Aggelos, 2022. "Modelling and simulation of building integrated Concentrating Photovoltaic/Thermal Glazing (CoPVTG) systems: Comprehensive energy and economic analysis," Renewable Energy, Elsevier, vol. 193(C), pages 1121-1131.
    4. Zogou, Olympia & Stapountzis, Herricos, 2011. "Experimental validation of an improved concept of building integrated photovoltaic panels," Renewable Energy, Elsevier, vol. 36(12), pages 3488-3498.
    5. Ma, Tao & Yang, Hongxing & Zhang, Yinping & Lu, Lin & Wang, Xin, 2015. "Using phase change materials in photovoltaic systems for thermal regulation and electrical efficiency improvement: A review and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1273-1284.
    6. DeBlois, Justin C. & Bilec, Melissa M. & Schaefer, Laura A., 2013. "Design and zonal building energy modeling of a roof integrated solar chimney," Renewable Energy, Elsevier, vol. 52(C), pages 241-250.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liang, Ruobing & Pan, Qiangguang & Wang, Peng & Zhang, Jili, 2018. "Experiment research of solar PV/T cogeneration system on the building façade driven by a refrigerant pump," Energy, Elsevier, vol. 161(C), pages 744-752.
    2. Yang, Tingting & Athienitis, Andreas K., 2015. "Experimental investigation of a two-inlet air-based building integrated photovoltaic/thermal (BIPV/T) system," Applied Energy, Elsevier, vol. 159(C), pages 70-79.
    3. Li, Meng & Ma, Tao & Liu, Jiaying & Li, Huanhuan & Xu, Yaling & Gu, Wenbo & Shen, Lu, 2019. "Numerical and experimental investigation of precast concrete facade integrated with solar photovoltaic panels," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    4. Zhang, Qi & He, Suoying & Song, Tianyi & Wang, Mingwei & Liu, Zhilan & Zhao, Jifang & Gao, Qi & Huang, Xiang & Han, Kuihua & Qi, Jianhui & Gao, Ming & Shi, Yuetao, 2023. "Modeling of a PV system by a back-mounted spray cooling section for performance improvement," Applied Energy, Elsevier, vol. 332(C).
    5. Agathokleous, Rafaela A. & Kalogirou, Soteris A., 2016. "Double skin facades (DSF) and building integrated photovoltaics (BIPV): A review of configurations and heat transfer characteristics," Renewable Energy, Elsevier, vol. 89(C), pages 743-756.
    6. Yang, Tingting & Athienitis, Andreas K., 2016. "A review of research and developments of building-integrated photovoltaic/thermal (BIPV/T) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 886-912.
    7. Zhang, Chenyu & Wang, Ning & Xu, Hongtao & Fang, Yuan & Yang, Qiguo & Talkhoncheh, Fariborz Karimi, 2023. "Thermal management optimization of the photovoltaic cell by the phase change material combined with metal fins," Energy, Elsevier, vol. 263(PA).
    8. Arkar, C. & Žižak, T. & Domjan, S. & Medved, S., 2020. "Dynamic parametric models for the holistic evaluation of semi-transparent photovoltaic/thermal façade with latent storage inserts," Applied Energy, Elsevier, vol. 280(C).
    9. Ruoping, Yan & Xiaohui, Yu & Fuwei, Lu & Huajun, Wang, 2020. "Study of operation performance for a solar photovoltaic system assisted cooling by ground heat exchangers in arid climate, China," Renewable Energy, Elsevier, vol. 155(C), pages 102-110.
    10. Li, Zhenpeng & Ma, Tao & Zhao, Jiaxin & Song, Aotian & Cheng, Yuanda, 2019. "Experimental study and performance analysis on solar photovoltaic panel integrated with phase change material," Energy, Elsevier, vol. 178(C), pages 471-486.
    11. Sardarabadi, Mohammad & Hosseinzadeh, Mohammad & Kazemian, Arash & Passandideh-Fard, Mohammad, 2017. "Experimental investigation of the effects of using metal-oxides/water nanofluids on a photovoltaic thermal system (PVT) from energy and exergy viewpoints," Energy, Elsevier, vol. 138(C), pages 682-695.
    12. Li, Wenjia & Hao, Yong, 2017. "Efficient solar power generation combining photovoltaics and mid-/low-temperature methanol thermochemistry," Applied Energy, Elsevier, vol. 202(C), pages 377-385.
    13. Evangelisti, Luca & De Lieto Vollaro, Roberto & Asdrubali, Francesco, 2019. "Latest advances on solar thermal collectors: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    14. Peci López, F. & Ruiz de Adana Santiago, M., 2015. "Sensitivity study of an opaque ventilated façade in the winter season in different climate zones in Spain," Renewable Energy, Elsevier, vol. 75(C), pages 524-533.
    15. Ma, Tao & Li, Meng & Kazemian, Arash, 2020. "Photovoltaic thermal module and solar thermal collector connected in series to produce electricity and high-grade heat simultaneously," Applied Energy, Elsevier, vol. 261(C).
    16. Rounis, Efstratios Dimitrios & Athienitis, Andreas & Stathopoulos, Theodore, 2021. "Review of air-based PV/T and BIPV/T systems - Performance and modelling," Renewable Energy, Elsevier, vol. 163(C), pages 1729-1753.
    17. Vijayaraghavan, K., 2016. "Green roofs: A critical review on the role of components, benefits, limitations and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 740-752.
    18. Ma, Tao & Zhao, Jiaxin & Li, Zhenpeng, 2018. "Mathematical modelling and sensitivity analysis of solar photovoltaic panel integrated with phase change material," Applied Energy, Elsevier, vol. 228(C), pages 1147-1158.
    19. Karami, Babak & Azimi, Neda & Ahmadi, Shahin, 2021. "Increasing the electrical efficiency and thermal management of a photovoltaic module using expanded graphite (EG)/paraffin-beef tallow-coconut oil composite as phase change material," Renewable Energy, Elsevier, vol. 178(C), pages 25-49.
    20. Wenjie Zhang & Tongdan Gong & Shengbing Ma & Jianwei Zhou & Yingbo Zhao, 2021. "Study on the Influence of Mounting Dimensions of PV Array on Module Temperature in Open-Joint Photovoltaic Ventilated Double-Skin Façades," Sustainability, MDPI, vol. 13(9), pages 1-14, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:19:p:12875-:d:937279. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.